30/11/25,10:19 a.m.

Proyecto_Python_Cartera_Gino.ipynb - Colab

Paso 1: Instalar librerias del proyecto

'pip -q install —-upgrade pip

'pip -q install yfinance pandas numpy matplotlib seaborn statsmodels pandas—-datareader scikit-learn
'pip install PyPortfolioOpt

Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement
Requirement

already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already
already

satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:
satisfied:

PyPortfolioOpt in /usr/local/lib/python3.12/dist-packages (1.5.6)

cvxpy>=1.1.19 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (1.
€c0s<3.0.0,>=2.0.14 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOf
numpy>=1.26.0 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (2.
pandas>=0.19 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (2.2
plotly<6.0.0,>=5.0.0 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioC
scipy>=1.3 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (1.16.
tenacity>=6.2.0 in /usr/local/lib/python3.12/dist-packages (from plotly<6.0.0,>=5.
packaging in /usr/local/lib/python3.12/dist-packages (from plotly<6.0.0,>=5.0.0—>F
0sqp>=0.6.2 in /usr/local/lib/python3.12/dist-packages (from cvxpy>=1.1.19->PyPort
clarabel>=0.5.0 in /usr/local/lib/python3.12/dist—packages (from cvxpy>=1.1.19->Py
scs>=3.2.4.postl in /usr/local/lib/python3.12/dist-packages (from cvxpy>=1.1.19->F
cffi in /usr/local/lib/python3.12/dist-packages (from clarabel>=0.5.0->cvxpy>=1.1.
jinja2 in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.1.1¢
setuptools in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.
joblib in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.1.1¢
python-dateutil>=2.8.2 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.
pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.19->PyPort
tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.19->PyPc
six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2-
pycparser in /usr/local/lib/python3.12/dist-packages (from cffi->clarabel>=0.5.0-
MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->0sqp>=0.¢€

>
>

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

1/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab
Paso 2: Importar librerias y chequear versiones

import sys, platform, warnings, datetime as dt
import numpy as np

import pandas as pd

import yfinance as yf

import matplotlib as mpl

import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm

import pandas_datareader.data as web
import os, datetime as dt

import math

from pypfopt import EfficientFrontier, risk_models, expected_returns, DiscreteAllocation
warnings.filterwarnings("ignore")

Mostrar versiones

print("Python:", sys.version.split()[0])

print("0S:", platform.platform())
print("pandas:", pd.__version__)

print("numpy:", np.__version__)
print('seaborn:", sns.__version__)
print("yfinance:", yf.__version__)

(
(
(
print("matplotlib:", mpl.__version__)
(
(
(

print('statsmodels:", sm.__version__)

Configuracién de graficos
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["axes.grid"] = True

Fechas del proyecto

START_DATE = "2022-01-01"

END_DATE = dt.date.today().strftime("%sY-%m-%d")
print("Rango de analisis:", START_DATE, "-", END_DATE)

Semilla para reproducibilidad
np.random.seed(42)

Definir tickers

CEDEARS_BA = [
"AAPL.BA","MSFT.BA","NVDA.BA", "AMZN.BA","TSLA.BA","DIS.BA", "GOOGL.BA",
"MELI.BA","BRK.BA","KO.BA","JINJ.BA","PG.BA","PFE.BA","NKE.BA",
"GLD.BA","EEM.BA","IEUR.BA","YPF.BA","PAMP.BA","VIST.BA"

1

CRYPTO = ["BTC-USD"]

BENCH = ["SPY"]

print('CEDEARs:", len(CEDEARS_BA), "Crypto:", CRYPTO, "Benchmark:", BENCH)

Python: 3.12.12

0S: Linux-6.6.105+-x86_64-with—-glibc2.35

pandas: 2.2.2

numpy: 2.0.2

matplotlib: 3.10.0

seaborn: 0.13.2

yfinance: 0.2.66

statsmodels: 0.14.5

Rango de andlisis: 2022-01-01 - 2025-11-30
CEDEARs: 20 Crypto: ['BTC-USD'] Benchmark: ['SPY']

Paso 3: Montar Google Drive y definir rutas del proyecto

from google.colab import drive
drive.mount('/content/drive’, force_remount=True)

import os

Nombre exacto de tu carpeta en Drive
BASE_DIR = "/content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino"

Subcarpetas para organizar

DATA_DIR = os.path.join(BASE_DIR, "data")
FIGS_DIR = os.path.join(BASE_DIR, "figs")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(FIGS_DIR, exist_ok=True)

print('Carpeta base:", BASE_DIR)
print('Carpeta data:", DATA_DIR)

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 2/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab
print("Carpeta figs:", FIGS_DIR)

Mounted at /content/drive

Carpeta base: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino
Carpeta data: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino/data
Carpeta figs: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino/figs

Paso 4: Definir tickers y mostrar tabla (sin SPY)

tickers = [
"AAPL","MSFT","NVDA","AMZN","TSLA","DIS","GOOGL",
“MELT", "BRK-B","K0","INJ","PG" , "PFE" , "NKE",
“GLD", "EEM" , "TEUR" , "YPF" , "PAM" , "VIST",
“UNH",
"BTC-USD","SPY"

]

Excluir SPY
tickers_sin_spy = [t for t in tickers if t != "SPY"]

Ordenar
tickers_sorted = sorted(tickers_sin_spy)

Crear DataFrame

df_tickers = pd.DataFrame({"Ticker": tickers_sorted})
df_tickers.index = df_tickers.index + 1
df_tickers.index.name = "N°"

Mostrar con estilo oscuro

display/(
df_tickers.style
.set_caption("Listado de Tickers del Portafolio (Orden Alfabético, sin SPY)")
.set_table_styles([

{"selector": "th", "props": [
("background-color", "#1E1E1lE"),
("color", "white"),

("padding", "6px 1@px"),
("font-size", "12px"),
("border", "lpx solid #444"),
("text-align", "center")

1},

{"selector": "td", "props": [
("background-color", "#2B2B2B"),
("color", "#EQEQEQ"),
("padding", "6px 1@px"),
("font-size", "12px"),
("border", "1px solid #444"),
("text-align", "center")

1},

{"selector": "caption", "props": [
("caption-side", "top"),
("font-size", "14px"),
("font-weight", "bold"),
("color", "#EQEQEQ"),
("text-align", "center"),
("padding", "6px")

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 3/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Listado de
Tickers del
Portafolio
(Orden
Alfabético, sin
SPY)

AAPL

AMZN

BRK-B

BTC-USD

DIS

EEM

GLD

GOOGL

IEUR

JINJ

KO

MELI

MSFT

NKE

NVDA

PAM

PFE

PG

TSLA

UNH

VIST

YPF

Paso 5: Descargar precios ajustados (2022 - hoy)

raw = yf.download(
tickers,
start="2022-01-01",
end=dt.date.today().strftime("%Y-%m-%d"),
auto_adjust=True,
progress=False

)

Seleccién de precios de cierre
if isinstance(raw.columns, pd.MultilIndex):

data = raw.xs('Close', level=0, axis=1).copy()
else:

data = raw['Close'].copy()

Eliminacién de filas con faltantes
data = data.dropna()

Vista rapida

print("Dimensiones:", data.shape)
data.head()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

4/35

30/11/25,10:19 a.m.

Dimensiones: (981, 23)

Proyecto_Python_Cartera_Gino.ipynb - Colab

GLD

Ticker AAPL AMZN BRK-B BTC-USD DIS EEM
Date
3(1)202:,; 178.270340 170.404495 300.790009 46458.117188 154.189529 45.263573 168.330002
3(1)202‘; 176.007782 167.522003 308.529999 45897.574219 153.176422 45.107178 169.570007
32202&_: 171.326019 164.356995 309.920013 43569.003906 152.645294 44.371185 169.059998
sszozé 168.466019 163.253998 313.220001 43160.929688 154.327240 44.573582 166.990005
322027' 168.632492 162.554001 319.779999 41557.902344 155.242004 44.978378 167.750000

5 rows x 23 columns

import matplotlib.pyplot as plt
plt.style.use("dark_background")

Paso 6: Precios base 100
from matplotlib import patheffects as pe
from cycler import cycler

Calculo base 100
basel00 = data.div(data.iloc[@]).mul(100)

print("Dimensiones basel@0:", basel00.shape)
display(basel@0.head())

Ultimos valores y top 5
last_values = basel@0.iloc[-1].sort_values(ascending=False)
top_tickers = last_values.head(5).index.tolist()

Grafico

with plt.style.context('default'):
fig, ax = plt.subplots(figsize=(17, 6))
ax.set_facecolor("white")
fig.patch.set_facecolor("white")

Lineas grises para los no destacados
ax.plot(basel@0.index, basel@0.values, color="#adb5bd",
linewidth=0.8, alpha=0.6, zorder=1)

Colores para los top 5 (dinadmicos, sin hardcodear tickers)
paleta_top5 = ["#14213d", "#00b4d8", "#38b000", "#fca31l", "#efd76f"]
color_map = dict(zip(top_tickers, paleta_top5))

Top 5 destacados
for t in top_tickers:
ax.plot(basel@0.index, basel@0[t],
color=color_map.get(t, "#333333"),
linewidth=1.8, zorder=3, label=t)

Coordenadas para etiquetas
y_last = {t: float(basel@@[t].iloc[-1]) for t in top_tickers}
ordered = sorted(top_tickers, key=lambda k: y_lastl[k])
ymin, ymax = ax.get_ylim()
pad = (ymax — ymin) % 0.05
y_targets = np.linspace(
max(ymin + pad, min(y_last.values())),
min(ymax - pad, max(y_last.values())),
num=1len(ordered)
)
last_x = basel00.index[-1]
x_text = last_x + pd.Timedelta(days=80)

Etiquetas de color con lineas guia
for t, y_tgt in zip(ordered, y_targets):
c = color_map.get(t, "#000000")
ax.annotate(
xy=(x_text, y_tgt),
xytext=(last_x, y_last[t]),
arrowprops=dict(arrowstyle="-", color=c, lw=1, alpha=0.9),
zorder=4

GOOGL

143.998322

143.410385

136.831268

136.803955

136.078461

IEUR

52.333141

52.449081

52.012081

51.798042

52.074509

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

JNJ

152.576859

152.167725

153.181717

152.656937

154.720444

5/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

)

ax. text(
x_text, y_tgt, f"{t}",
va="center", ha="left",
fontsize=10, color=c, fontweight="bold",
bbox=dict(boxstyle="round,pad=0.25",

fc="white", ec=c, lw=0.5, alpha=0.95),

path_effects=[pe.withStroke(linewidth=1, foreground="white")],
zorder=5

)

Ejes y estilo general
ax.set_title("Precios base 100 (inicio = 100)",
fontsize=14, color="black", pad=10)
ax.set_ylabel("Indice", color="black")
ax.tick_params(colors="black")
ax.spines["bottom"].set_color("black")
ax.spines["left"].set_color("black")
ax.grid(True, color="#e6eb6e6", linestyle="--",
linewidth=0.7, alpha=0.8)
ax.set_xlim(basel00.index[0],
base100.index[-1] + pd.Timedelta(days=300))

Leyenda lateral
handles, labels = ax.get_legend_handles_labels()
otros_tickers = [t for t in basel@@.columns if t not in top_tickers]
for t in otros_tickers:
h, = ax.plot([]l, [1, color="#c7c7c7", lw=1, label=t)
handles.append(h)
labels.append(t)

leg = ax.legend(
handles, labels,
title="Tickers (Top 5 destacados)",
frameon=True, facecolor="white", edgecolor="#999",
fontsize=8, ncol=1l,
loc='center left', bbox_to_anchor=(1.01, 0.5)
)

plt.tight_layout(rect=[0, @, 0.85, 1])
plt.show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 6/35

30/11/25,10:19 a.m.

Proyecto_Python_Cartera_Gino.ipynb - Colab

Dimensiones basel@0: (981, 23)
Ticker AAPL AMZN BRK-B BTC-USD DIS EEM GLD GOOGL IEUR JINJ
Date
3(1)_202; 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000
3(1)_202‘; 98.730828 98.308441 102.573221 98.793444 99.342947 99.654479 100.736652 99.591706 100.221542 99.731851
32_202; 96.104612 96.451091 103.035342 93.781252 98.998482 98.028465 100.433669 95.022822 99.386507 100.396429
§$_202(; 94.500307 95.803809 104.132449 92.902882 100.089313 98.475615 99.203947 95.003854 98.977514 100.052484
32_2(:'27- 94.593690 95.393024 106.313371 89.452403 100.682585 99.369925 99.655438 94.500033 99.505796 101.404922
5 rows x 23 columns
Precios base 100 (inicio = 100)
1000 Tickers (Top 5 destacados)
o — VST
\—w s
PAM
—GLD

800

Indice

400

200+

Pa
impo
n =
cols

rows

fig,
axes

for

for

date
for

plt.
plt.
plt.
plt.

600

_format

——{NVDA

GLD

T T T T T T T T
2022-07 2023-01 2023-07 2024-07 2025-01 2025-07 2026-01 2026-07

so 7: Graficos individuales de precios ajustados
rt matplotlib.dates as mdates

len(data.columns)
=3
math.ceil(n / cols)

axes plt.subplots(nrows=rows, ncols=cols, figsize=(18, 4*rows), sharex=True)
= axes.flatten()

i, ticker in enumerate(data.columns):

axes[i].plot(data.index, datalticker], lw=1.5, color="#ccff33")
axes[i].set_title(ticker, fontsize=10)

axes[i].tick_params(axis='x"', labelbottom=True)

axes[i]l.grid(True, color="#d3d3d3", linestyle="--", linewidth=0.5, alpha=0.7)

j in range(i+1l, len(axes)):
fig.delaxes(axes[j])

mdates.DateFormatter('sm-%Y')
ax 1in axes:
ax.xaxis.set_major_formatter(date_format)

ax.tick_params(axis='x"', rotation=45)

suptitle("Evolucién individual de precios ajustados (2022-2025)", fontsize=14)
tight_layout()

subplots_adjust(top=0.93)

show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

AAPL
AMZN
BREEB
BICUSD
Dis
EEM
GOOGL
IEUR
N

Ko

MELI
MSFT
NKE

PFE

PG

SPY
TSLA
UNH

7/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 8/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 9/35

)/11/25,10:19 a.m.

Proyecto_Python_Cartera_Gino.ipynb - Colab

Evolucién individual de precios ajustados (2022-2025)

BTC-USD

120000 4

100000 +

80000 1

60000

40000 1

20000

Paso 8: Retornos diarios

ret_diarios = data.pct_change().dropna(
print("Dimensiones retornos diarios:
display(ret_diarios.head())

"

https://colab.research.google.com/drive/1IFLDFSoonLfcY YsUtttPMqPFa4 Y MhGlex ?authuser=3#scroll Tt

IMVwDGVDofYsé&printMode=true

30/11/25,10:19 a.m.

2022-
01-04

2022-
01-05

2022-
01-06

2022-
01-07

2022-
01-10

-0.012692

-0.026600

-0.016693

0.000988

0.000116

5 rows x 23 columns

-0.016916

-0.018893

-0.006711

-0.004288

-0.006570

0.025732

0.004505

0.010648

0.020944

-0.002658

Paso 9: Matriz de correlaciones
correlacion = ret_diarios.corr()

plt.figure(figsize=(12, 10))

ax = sns.heatmap(

correlacion,
annot=True,

cmap="Blues',

center=0,
linewidths=0.7,
fmt=".2f",

square=True,
cbar_kws={"shrink": 0.8}

)

ax.grid(False)
ax.tick_params(left=False, bottom=False)

-0.012066

-0.050734

-0.009366

-0.037141

0.006337

Proyecto_Python_Cartera_Gino.ipynb - Colab

-0.006571

-0.003467

0.011019

0.005927

-0.007793

o

-0.003455

-0.016317

0.004561

0.009082

0.000000

0.007367

-0.003008

-0.012244

0.004551

0.003040

plt.title('Matriz de Correlaci6n de Retornos Diarios', fontsize=16)
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()

plt.show()

-0.004083

-0.045876

-0.000200

-0.005303

0.012061

0.002215

-0.008332

-0.004115

0.005337

-0.012845

-0.002681

0.006664

-0.003426

0.013517

-0.004944

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true

0.010445

-0.024881

-0.007457

-0.025273

-0.041601

11/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Matriz de Correlacién de Retornos Diarios

el
el

ol

IEUR
INJ

KO

N o e
e g e
I o e o

o [

Paso 10: Histogramas de retornos diarios

n = len(ret_diarios.columns)
cols = 3
rows = math.ceil(n / cols)

fig, axes = plt.subplots(rows, cols, figsize=(18, 4*rows))
axes = axes.flatten()

for i, ticker in enumerate(ret_diarios.columns):
axes[i].hist(
ret_diarios[ticker],
bins=50,
alpha=0.8,
color="#ffddeo",
edgecolor="#222222",
linewidth=0.5
)
Linea vertical en 0%
axes[il.axvline(@, color="red", linestyle="--", linewidth=1)

axes[i]l.set_title(ticker, fontsize=10)
axes[il.grid(True, linestyle="--", color="#d3d3d3", alpha=0.6)

Eliminar ejes vacios

for j in range(i+1l, len(axes)):
fig.delaxes(axes[jl)

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 12/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab
plt.suptitle("Distribuci6n de retornos diarios (2022-2025)", fontsize=14)
plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 13/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 14/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Distribucién de retornos diarios (2022-2025)

0.00 0.05 -0.06 -0.04 —0.02 0.00 0.02 0.04
BTC-USD DIs EEM

0 |
0.00 0.05 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06
GOOGL IEUR

| oL i i
0.02 -0.100 -0.075 -0.050 —0.025 0000 0025 0050 0.075 0.100 -0.06 —0.04 -0.02 X 0.02 0.04 0.06 0.08

0 y
—0.08 -0.06 -0.04 -002 000 002 004 006 .15 -0.10 -0.05 000 0.05 0.10
NVDA

0
0.000 0025 0050 0.075 0.100 5 -010 -0.05 0.0 0.05 0.10 0.15

Paso 11: Boxplots comparativos de retornos diarios

Ordenar tickers por volatilidad (descendente)
order = ret_diarios.std().sort_values(ascending=False).index

Paleta de color (de rojo a verde)
paleta = sns.color_palette("RdY1Gn", n_colors=len(order))

plt.figure(figsize=(16, 7))

Configuracién de los outliers con contorno
flier_props = dict(
marker='o"',
markerfacecolor="#00FFFF', # relleno
markeredgecolor="'#00334d"', # contorno

markeredgewidth=0.5, # grosor del contorno
markersize=7.5,
alpha=1
)
Propiedades visuales adicionales
box_props = dict(edgecolor="'black', linewidth=1.3) # borde de cada caja
median_props = dict(color='black', linewidth=1.3) # linea mediana

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 15/35

30/11/25,10:19 a.m.

Proyecto_Python_Cartera_Gino.ipynb - Colab

whisker_props = dict(color='white', linewidth=1.1) # bigotes visibles
cap_props = dict(color="white', linewidth=1.1) # extremos de los bigotes

Crear el boxplot
sns.boxplot(

sns.
plt.
plt.
plt.
plt.
plt.
plt.

data=ret_diarios[order],
palette=paleta,
showfliers=True,
linewidth=1.3,

width=0.6,
flierprops=flier_props,
boxprops=box_props,
medianprops=median_props,
whiskerprops=whisker_props,
capprops=cap_props

despine()

title("Distribucién de Retornos Diarios (ordenado por volatilidad)", fontsize=14, pad=12)
ylabel("Retorno diario")

xticks(rotation=45, ha="right")

grid(axis="y", linestyle="--", alpha=0.35)
tight_layout()
show()

Distribucién de Retornos Diarios (ordenado por volatilidad)

[}
e
g
8.

° @@ ¢
)

I II
—
II_‘
"
|
@~ |-

/0903 —|

Paso 12: Estadisticas descriptivas

Basicas (diarias)
stats = ret_diarios.describe(percentiles=[.01,.05,.25,.5,.75,.95,.99]).T

Métricas adicionales
stats["skew"] = ret_diarios.skew()
stats["kurt"] = ret_diarios.kurt()

Anualizadas
stats['"mean_ann"] = ret_diarios.mean() x 252

stats["vol_ann"]

ret_diarios.std() * np.sqrt(252)

Ordenar por volatilidad anualizada
stats = stats.sort_values("vol_ann", ascending=False)

display(stats.round(4))

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true

16/35

30/11/25,10:19 a.m.

Ticker
TSLA
YPF
NVDA

BTC-
usb

VIST
MELI
PAM
AMZN
NKE
GOOGL
UNH
DIS
AAPL
MSFT
PFE
EEM
IEUR
SPY
PG
BRK-B
JNJ

KO

Paso
tickers
n = len

cols =
rows =

Proyecto_Python_Cartera_Gino.ipynb - Colab

o°

count mean std min 1 5% 25% 50% 75% 95% 99% max skew
980.0 0.0008 0.0392 -0.1543 -0.0974 -0.0615 -0.0207 0.0010 0.0221 0.0622 0.1011 0.2269 0.2911
980.0 0.0029 0.0360 -0.1534 -0.0731 -0.0489 -0.0182 0.0014 0.0203 0.0630 0.0895 0.3989 1.7219

980.0 0.0024 0.0342 -0.1697 -0.0781 -0.0522 -0.0176 0.0030 0.0216 0.0529 0.0898 0.2437 0.5402

980.0 0.0012 0.0335 -0.2268 -0.0854 -0.0505 -0.0159 0.0004 0.0175 0.0555 0.0979 0.1987 0.0349

980.0 0.0028 0.0330 -0.1098 -0.0781 -0.0493 -0.0170 0.0008 0.0208 0.0567 0.0979 0.1866 0.5641
980.0 0.0010 0.0324 -0.1688 -0.0925 -0.0493 -0.0143 0.0011 0.0176 0.0513 0.0918 0.1616 -0.0411
980.0 0.0020 0.0301 -0.1670 -0.0620 -0.0433 -0.0160 0.0011 0.0182 0.0477 0.0781 0.2375 0.7165
980.0 0.0006 0.0238 -0.1405 -0.0613 -0.0358 -0.0123 0.0004 0.0139 0.0358 0.0653 0.1354 0.1639
980.0 -0.0006 0.0227 -0.1998 -0.0582 -0.0318 -0.0114 -0.0006 0.0105 0.0317 0.0602 0.1519 -0.5725
980.0 0.0010 0.0207 -0.0951 -0.0497 -0.0313 -0.0109 0.0014 0.0120 0.0318 0.0563 0.1022 0.0850
980.0 -0.0002 0.0201 -0.2238 -0.0607 -0.0264 -0.0083 0.0006 0.0092 0.0250 0.0522 0.1198 -2.1078
980.0 -0.0002 0.0191 -0.1316 -0.0505 -0.0286 -0.0093 -0.0003 0.0095 0.0294 0.0449 0.1189 -0.0458
980.0 0.0006 0.0181 -0.0925 -0.0481 -0.0291 -0.0082 0.0010 0.0096 0.0262 0.0455 0.1533 0.5422
980.0 0.0006 0.0170 -0.0772 -0.0423 -0.0268 -0.0080 0.0007 0.0098 0.0255 0.0428 0.1013 0.2497
980.0 -0.0005 0.0157 -0.0672 -0.0399 -0.0237 -0.0102 -0.0008 0.0085 0.0262 0.0426 0.0683 0.2464
980.0 0.0003 0.0117 -0.0556 -0.0285 -0.0182 -0.0060 0.0005 0.0070 0.0181 0.0299 0.0805 0.4090
980.0 0.0004 0.0115 -0.0668 -0.0304 -0.0169 -0.0062 0.0007 0.0065 0.0171 0.0294 0.0785 0.2445
980.0 0.0005 0.0114 -0.0585 -0.0322 -0.0171 -0.0051 0.0006 0.0064 0.0178 0.0264 0.1050 0.3614
980.0 0.0001 0.0113 -0.0623 -0.0277 -0.0176 -0.0058 0.0004 0.0066 0.0166 0.0284 0.0427 -0.4853
980.0 0.0006 0.0112 -0.0691 -0.0282 -0.0169 -0.0055 0.0007 0.0070 0.0172 0.0292 0.0584 -0.0146
980.0 0.0004 0.0109 -0.0759 -0.0262 -0.0161 -0.0053 0.0004 0.0059 0.0161 0.0286 0.0619 0.1133

980.0 0.0004 0.0102 -0.0696 -0.0256 -0.0151 -0.0057 0.0006 0.0060 0.0164 0.0265 0.0473 -0.2652

13: Diagramas de dispersién de cada activo vs SPY
= [t for t in ret_diarios.columns if t != "SPY"]
(tickers)

4

(n + cols - 1) // cols

fig, axes = plt.subplots(rows, cols, figsize=(18, 4xrows))

axes =

for i,
ax
ax.

)
ax.
ax
ax.
ax

Quita

axes.flatten()

t in enumerate(tickers):

= axes[il]

scatter(
ret_diarios["SPY"],
ret_diarios[t],

=20, # tamafio de los puntos
alpha=1, # transparencia
facecolors="#00ffe7", # color de relleno
edgecolors="#004d40", # contorno oscuro
linewidths=0.5 # grosor del contorno

set_title(t, fontsize=9)

.set_xlabel("SPY")

set_ylabel(t)

.grid(True, color="#cccccc", linestyle="--", alpha=0.4)

r subplots vacios

for j in range(i+1l, len(axes)):

fig

plt.sup
plt.tig
plt.sub
plt.sho

.delaxes(axes[j])

title("Dispersi6n de retornos diarios vs SPY", fontsize=14)
ht_layout()

plots_adjust(top=0.93)

w()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

kurt mean_
2.8194 0.2
16.6787 0.7
4.6781 0.€
5.4983 0.
2.6270 0.7
3.5359 0.2
5.9076 0.t
4.6563 0.1
12.5371 -0.1
2.9255 0.z
24,9787 -0.C
7.7154 -0.C
7.2587 0.1
3.3064 0.1
1.6661 -0.1
4.2452 0.C
4.7634 0.C
9.0120 0.1
3.2657 0.C
3.8880 0.1
5.5538 0.C
4.1147 0.C

17/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 18/35

30/11/25,10:19 a.m.

Paso 14:

tickers
cols
rows

n,

fig, axes =

-0.050-0.025 0.000 0.0

-0.050-0.025 0.000 0.025 0.050 0.075 0.100

Proyecto_Python_Cartera_Gino.ipynb - Colab

Dispersion de retornos diarios vs SPY

0.10
[XH

z

§ 000

z

-0.05

0.000 0,025 0.050 0.075 0.100 -0.050-0.025 0.000 0. .050 0,075 0.100
sPY

EEM

0,050 0.075 0.100

-0.050-0.025 0.000 0.025 0.050 0.075 0.100 -0.050-0.025 0.000 0.025 0.050 0.075 0.100

Dispersién vs SPY

[t for t in ret_diarios.columns if t != "SPY"]
= len(tickers), 4

(n + cols — 1) // cols

plt.subplots(rows, cols, figsize=(18, 4xrows), facecolor="#111111")

axes = axes.flatten()

for i, t in enumerate(tickers):

ax

= axes[il]

ax.set_facecolor("#111111")

Puntos de dispersidn
ax.scatter(

ret_diarios["SPY"],
alpha=0.7,

=20,
facecolors="#0@0FFE7",
edgecolors="#003F3C",
linewidths=0.5

ret_diarios[t],

relleno turquesa brillante
contorno verde petrdéleo oscuro

Linea de regresién amarilla (Beta)
sns.regplot(

)

x=ret_diarios["SPY"], y=ret_diarios[t],
scatter=False, ax=ax, color="#ffeb3b", ci=None,
line_kws={"1w":1.8}

Intervalos de confianza (lineas blancas difusas)

for

_ in range(3):

sns.regplot(
x=ret_diarios["SPY"], y=ret_diarios[t],
scatter=False, ax=ax, color="white", ci=95,
line_kws={"1lw": 0.5, "alpha": 0.15}

Estilo de cada subplot

ax.
ax.
ax.
.yaxis.label.set_color("white")

ax

aX.

set_title(t, fontsize=10, fontweight="bold", color="white")
tick_params(colors="white")
xaxis.label.set_color("white")

grid(True, linestyle="--", alpha=0.2, color="white")

Quitar subplots vacios
for j in range(i+1, len(axes)):
fig.delaxes(axes[j])

plt.suptitle("Dispersién vs SPY (Beta + intervalo de confianza 95%)",

fontsize=15, fontweight="bold", color="white", y=1.02)

plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

BTC-USD

-0.050-0.025 0.000

-0.050-0.025 0.000

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true

0.0

0.025

0.050

0.050

0.075

0.075

0.100

0.100

19/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 20/35

30/11/25,10:19 a.m.

retornos = ret_diarios.copy()

activos = [t for t in tickers if t

—0.050-0.025 0.000 0.025 0.050 0.075 0.100
SPY
DIS

~0.050-0.025 0.000 0.025 0.050 0.075 0.100
SPY
IEUR

]
Paso 15: Ratios Performance

benchmark = "SPY"

Proyecto_Python_Cartera_Gino.ipynb - Colab

Dispersion vs SPY (Beta + intervalo de confianza 95%)

~0.050-0.025 0.000

~0.050-0.025 0.000

0.025
SPY
EEM

1= "SPY"]

0.050

0.050

0.075

0.075

0.100

0.100

retornos[activos + [benchmark]].dropna(how="any")

r =

rm = r[benchmark]

ra = rlactivos]

mu_anual = ra.mean() *x 252

vol_anual = ra.std() * (252 sk 0.5)
rf_anual = 0.05

sharpe = (mu_anual - rf_anual) / vol_anual
downside = ra.where(ra < 0, 0.0)
down_vol_a = downside.std() * (252 *x 0.5)
sortino =

var_mkt = np

.var(rm, ddof=0)

(mu_anual - rf_anual) / down_vol_a

—0.050-0.025 0.000 0.025 0.050 0.075 0.100
SPY
GLD

~0.050-0.025 0.000 0.025 0.050 0.075 0.100
SPY
Ko

GOOGL

BTC-USD

—0.050-0.025 0.000 0.025 0.050 0.075 0.100
SPY
GOOGL

~0.050-0.025 0.000 0.025 0.050 0.075 0.100

betas = pd.Series({t: (np.cov(ralt]l, rm, ddof=0)[0,1] / var_mkt) if var_mkt!=0 else np.nan for t in activos})

(mu_anual - rf_anual) / betas

treynor =
ratios = (
pd.DataFrame({
"'Sharpe": sharpe,
"Sortino": sortino,
"Treynor": treynor
})
.replace([np.inf, -np.inf], np.nan)
.round(3)
.sort_index()
)
ratios

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true

21/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Sharpe Sortino Treynor @

Ticker u
AAPL 0.369 0.626 0.087 o/
AMZN 0.270 0.454 0.067

BRK-B 0.582 0.985 0.162

BTC-USD 0.497 0.842 0.219

DIS -0.343 -0.549 -0.100
EEM 0.076 0.131 0.020
GLD 1.110 1.918 1.708

GOOGL 0.637 1.087 0.168

IEUR 0.217 0.369 0.052
JNJ 0.251 0.425 0.225
KO 0.284 0.470 0.156

MELI 0.381 0.627 0.119

MSFT 0.348 0.591 0.082

NKE -0.581 -0.898 -0.187
NVDA 1.016 1.832 0.257
PAM 0.943 1.754 0.488
PFE -0.678 -1.156 -0.375
PG -0.182 -0.285 -0.105
TSLA 0.259 0.448 0.079
UNH -0.282 -0.396 -0.226
VIST 1.253 2.382 0.720
YPF 1.183 2.355 0.626

Proximos pasos: (Generar cédigo con rat ios> (New interactive sheet)

Paso 16: Implementacidén modelo Fama-French de 3 factores

Descargar factores Fama-French (diarios)
url = "https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_daily_CSV.zip"
factors = pd.read_csv(url, skiprows=3)

factors = factors.rename(columns={"Unnamed: 0": "Date"})

factors = factors[factors["Date"].str.isnumeric()]

factors['"Date"] = pd.to_datetime(factors['Date"], format="%Y%m%d")
factors = factors.set_index("Date").astype(float) / 100

factors = factors[["Mkt-RF", "SMB", "HML", "RF"1]

Unidén con retornos diarios (ajustar nombre de tu variable: ret_diarios)
data_ff = ret_diarios.join(factors, how="inner")

import statsmodels.api as sm

ff_results = {}
for ticker in [t for t in tickers if t != "SPY"]: # todos menos SPY
Ri = data_ff[ticker] - data_ff["RF"]
X = data_ff[["Mkt-RF", "SMB", "HML"]]
X = sm.add_constant(X)
modelo = sm.OLS(Ri, X).fit()
ff_results([ticker] = {
"Alpha": round(modelo.params["const"], 4),
"Beta_Mkt": round(modelo.params["Mkt-RF"], 4),
"Beta_SMB": round(modelo.params["SMB"], 4),
"Beta_HML": round(modelo.params["HML"], 4),
"R2_ajustado": round(modelo.rsquared_adj, 4)

b

ff_table = pd.DataFrame(ff_results).T.sort_index()
ff_table

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

22/35

30/11/25,10:19 a.m.

AAPL
AMZN
BRK-B
BTC-USD
DIS
EEM
GLD
GOOGL
IEUR
JNJ
KO
MELI
MSFT
NKE
NVDA
PAM
PFE
PG
TSLA
UNH
VIST
YPF

Proyecto_Python_Cartera_Gino.ipynb - Colab

Alpha Beta_Mkt Beta_SMB Beta_HML R2_ajustado

0.0000
0.0001
0.0000
0.0012
-0.0006
-0.0001
0.0007
0.0004
-0.0001
-0.0000
-0.0001
0.0007
0.0001
-0.0011
0.0018
0.0015
-0.0009
-0.0003
0.0003
-0.0005
0.0022

0.0023

1.1742
1.3683
0.8262
0.9932
1.0483
0.6676
0.0798
1.1186
0.7889
0.2809
0.3933
1.3549
1.0472
1.0415
1.8642
1.0008
0.5099
0.3769
1.7855
0.4541
1.1152

1.2640

-0.2847
-0.1500
-0.2429
0.6647
0.1162
0.1354
0.0573
-0.2606
0.0304
-0.1890
-0.3204
0.2995
-0.4451
0.2825
-0.4664
0.0199
-0.0666
-0.3284
0.3944
-0.1546
-0.0471

-0.0162

-0.2316
-0.5443
0.5187
-0.2659
0.1607
-0.0030
0.0036
-0.4583
0.1654
0.2515
0.1991
-0.8185
-0.4927
0.0152
-1.1104
0.3530
0.2683
0.0889
-0.5493
0.1807
0.7129

0.6824

0.6072
0.5893
0.5980
0.2008
0.4088
0.4979
0.0097
0.5130
0.5943
0.0810
0.1646
0.4110
0.6685
0.3278
0.5988
0.1302
0.1177
0.1271
0.3873
0.0523
0.1314

0.1410

Proximos pasos: (Generar cédigo con ff_table) (New interactive sheet)

Paso 17: Heatmap de betas

betas_ff = ff_table[["Beta_Mkt","Beta_SMB","Beta_HML"]]

plt.figure(figsize=(18, 6))
ax = sns.heatmap(

betas_ff.T,
annot=True,

cmap="'Blues',

center=0,

linewidths=0.7,

fmt=".

cbar_kws={"shrink": 0.6}

)

2f",

ax.grid(False)
ax.tick_params(left=False, bottom=False, labelsize=11)

plt.title('Betas Fama—French (3 Factores)', fontsize=18, pad=20)

plt.xticks(rotation=45, ha="right", fontsize=11)
plt.yticks(rotation=0, fontsize=12)

plt.tight_layout()

plt.show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

53
il
7

23/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Betas Fama-French (3 Factores)

Beta_Mkt

Beta_SMB RRu&L]

Beta_HML

Paso 18: Visualizacién Betas, Alpha, R2? ajustado
import matplotlib.colors as mcolors

Betas
betas = ff_table[["Beta_Mkt", "Beta_SMB", "Beta_HML"]].sort_values("Beta_Mkt", ascending=False)

x = np.arange(len(betas.index))

width = 0.25

metrics = betas.columns

colors = ["#f4flbb", "#9bclbc", "#ed6a5a"]

plt.figure(figsize=(15, 6))
for i, metric in enumerate(metrics):
plt.bar(x + i *x width, betas[metric], width, label=metric, color=colors[il])

Lineas divisorias verticales grises
for i in range(len(betas.index) - 1):
xpos = x[i] + width * len(metrics)
plt.axvline(x=xpos - width/2, color="gray", linestyle="--", linewidth=0.7)

Estilo general

plt.xticks(x + width, betas.index, rotation=45, color="white")
plt.title("Sensibilidades (Betas) a los factores Fama-French", color="white", pad=10)
plt.ylabel("Valor de la Beta", color="white")

plt.legend(title="Factor", facecolor="black", edgecolor="white", labelcolor="white")
plt.grid(False)

Eje X

ax = plt.gcal()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines["bottom"].set_linewidth(1)
ax.spines["left"].set_color("white")
ax.spines["left"].set_linewidth(1)
ax.tick_params(axis='x"', colors='white")
ax.tick_params(axis='y', colors='white')

plt.axhline(@, color="white", linewidth=1.0)

plt.tight_layout(pad=3.0)
plt.show()

Alpha
alpha_sorted = ff_table.sort_values("Alpha", ascending=False) ["Alpha"]
colors = ["#48cae4" if v > 0 else "#cafof8" for v in alpha_sorted]

plt.figure(figsize=(15,6))

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 24/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

alpha_sorted.plot(kind="bar", color=colors)

plt.axhline(@, color="white", linewidth=0.8)

plt.title("Alpha de Jensen segun modelo Fama-French", color="white")
plt.ylabel("Alpha (diario)", color="white")

plt.grid(False)

Eje X

ax = plt.gcal()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines["bottom"].set_linewidth(1)
ax.tick_params(axis='x"', colors='white')

plt.tight_layout(pad=3.0)
plt.show()

R? Ajustado
r2_sorted = ff_table.sort_values('R2_ajustado", ascending=False) ["R2_ajustado"]

cmap = mcolors.LinearSegmentedColormap.from_list("custom_violet", ["#e@c6ff", "#7400b8"])
norm = mcolors.Normalize(vmin=r2_sorted.min(), vmax=r2_sorted.max())
colors = [cmap(norm(v)) for v in r2_sorted]

plt.figure(figsize=(15,6))

r2_sorted.plot(kind="bar", color=colors)

plt.axhline(@, color="white", linewidth=0.8)

plt.title("R2? ajustado de las regresiones Fama-French", color="white")
plt.ylabel("R2 ajustado", color="white")

plt.grid(False)

Eje X

ax = plt.gcal()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines|["bottom"].set_linewidth(1)
ax.tick_params(axis='x"', colors='white")

plt.tight_layout(pad=3.0)
plt.show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 25/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 26/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Sensibilidades (Betas) a los factores Fama-French

'pip install adjustText

jL
€
j
j
s
)
jL

Paso 19: Visualizacién Alpha vs R? ajustado (con etiquetas separadas)

from adjustText import adjust_text
from matplotlib.lines import Line2D

ff = ff_table.copy()

ff["R2_ajustado"]

ff["Alpha"]

s = (ff["Beta_Mkt"].abs() * 600).clip(30, 1200)

< X
I

colors = np.where(y >= 0, "#60d394", "#ff5a5f")

plt.figure(figsize=(10,6))
plt.scatter(x, y, s=s, c=colors, alpha=0.75,
edgecolors="white", linewidths=0.6)

Crear etiquetas sin superposicidn
texts = []
for t in ff.index:
texts.append(
plt.text(
x.loc[t], y.loc[t], t,
fontsize=9, ha="center", va="bottom",
color="white", fontweight="bold"

)

Ajustar posiciones automaticamente
adjust_text(texts, arrowprops=dict(arrowstyle="-", color="white", 1w=0.3))

Linea horizontal en 0
plt.axhline(@, color="white", linewidth=0.8)

Ejes y titulos

plt.xlabel("R? ajustado", color="white")

plt.ylabel("Alpha (diario)", color="white")

plt.title("Alpha vs R2 ajustado", color="white", fontsize=13, fontweight="bold")

Fondo oscuro
plt.gca().set_facecolor("#0dof11")

Leyenda
legend_elems = [
Line2D([@], [@], marker='o', color='w', label='Alpha = @', markerfacecolor='#2ecc71', markersize=10),
Line2D([@], [@], marker='o', color='w', label='Alpha < @', markerfacecolor="'#e74c3c', markersize=10)
]
plt.legend(handles=1legend_elems, loc="best", facecolor="#0dof11",
edgecolor="white", labelcolor="white")

Cuadricula suave
plt.grid(True, linestyle="--", linewidth=0.6, alpha=0.35, color="#cccccc")

plt.tight_layout()
plt.show()

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 27/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Alpha vs R? ajustado

' Alpha = 0]
@~ Alpha <0
e

0.0020

0.0015

0.0010

0.0005

0.0000

—0.0005

—0.0010

0.3
R? ajustado

Paso 20: Simulacién Monte Carlo: generacién de 10.000 portafolios aleatorios

Universo y retornos diarios (excluye SPY)
activos = [t for t in tickers if t != "SPY"]
data_returns = ret_diarios[activos].dropna()

Semilla y cantidad de simulaciones
np.random.seed(42)
num_portafolios = 10000

Paradmetros anualizados

media_retornos = data_returns.mean() * 252
matriz_cov = data_returns.cov() *x 252
tickers_sim = data_returns.columns

Simulacién de portafolios aleatorios
resultados = {"Retorno": [], "Volatilidad": [], "Sharpe": [], "Pesos": []}

for _ in range(num_portafolios):
pesos = np.random.random(len(tickers_sim))
pesos /= pesos.sum()

retorno float(pesos @ media_retornos.values)
volatilidad = float(np.sqrt(pesos @ matriz_cov.values @ pesos))
sharpe_ratio = retorno / volatilidad

resultados["Retorno"].append(retorno)
resultados["Volatilidad"].append(volatilidad)
resultados["Sharpe'"].append(sharpe_ratio)
resultados["Pesos"].append(pesos)

DataFrame de resultados
portafolios = pd.DataFrame(resultados)

portafolios["Pesos"] = portafolios["Pesos"].apply(lambda x: np.round(x, 4))

portafolios.head()

Retorno Volatilidad Sharpe Pesos [
0 0.199462 0.209336 0.952834 [0.0378, 0.096, 0.0739, 0.0604, 0.0158, 0.0157... u
1 0177279 0.198857 0.891489 [0.0295, 0.037, 0.046, 0.0793, 0.0202, 0.0519,...
2 0.191760 0.190775 1.005164 [0.0237, 0.0607, 0.0286, 0.0477, 0.0501, 0.016...
3 0.261593 0.216959 1.205723 [0.0135, 0.0769, 0.0071, 0.0946, 0.074, 0.019,...
4 0.138644 0.181784 0.762684 [0.0889, 0.0473, 0.012, 0.0715, 0.0762, 0.0562...

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 28/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Proximos pasos: (Generar codigo con po rtafolios) CNew interactive sheet)

Paso 21: Visualizacién de la frontera eficiente y portafolio de mdxima Sharpe
plt.style.use("dark_background")

Identificar portafolio 6ptimo
idx_max_sharpe = portafolios["Sharpe"].idxmax()
mejor_portafolio = portafolios.loc[idx_max_sharpe]

plt.figure(figsize=(12, 7))

Colormap

cmap = mpl.colors.LinearSegmentedColormap.from_list(
"neo", ["#2ec4b6", "#5a189a", "#ffebob"]

)

Nube de puntos
scatter = plt.scatter(
portafolios["Volatilidad"], portafolios["Retorno"],
c=portafolios["Sharpe"], cmap=cmap,
alpha=0.85, s=45,
edgecolors="#9be7ff", linewidths=0.4
)

Barra de color

cbar = plt.colorbar(scatter)

char.set_label("Ratio de Sharpe", color="white", fontsize=11)
plt.setp(cbar.ax.get_yticklabels(), color="white")

Portafolio 6ptimo (estrella dorada)

plt.scatter(
mejor_portafolio["Volatilidad"], mejor_portafolio["Retorno"],
color="#fcf300", marker="x", s=520, edgecolors="black", linewidths=1.3,
label="Maxima Sharpe"

)

Estética general

plt.title("Simulacidén de Portafolios y Frontera Eficiente", fontsize=16, color="white", pad=12)
plt.xlabel("Volatilidad anual", color="white", fontsize=12)

plt.ylabel("Retorno anual esperado", color="white", fontsize=12)
plt.legend(facecolor="#0DOF11", edgecolor="white")

plt.grid(False)

Bordes del grafico en blanco

ax = plt.gcal()

for sp in ax.spines.values():
sp.set_color("white")

plt.tight_layout()
plt.show()

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 29/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Simulacioén de Portafolios y Frontera Eficiente

| * Maxima Sharpe

e
]
wn

=
=]

[}
Ratio de Sharpe

o
o
@
o
@
o
w
o
©
=
=
@
o
=
e
5]
2
0]
o

0.20
Volatilidad anual

Paso 22: Métricas del portafolio 6ptimo (Maxima Sharpe)
metricas_optimas = mejor_portafolio[["Retorno", "Volatilidad", "Sharpe"]].copy()

Formatear los valores

metricas_optimas["Retorno"] = f"{metricas_optimas['Retorno']%100:.2f}%"
metricas_optimas["Volatilidad"] = f'{metricas_optimas['Volatilidad']*100:.2f}%"
metricas_optimas["Sharpe"] = f"{metricas_optimas['Sharpe']:.2f}"

Mostrar como Serie (vertical)

metricas_optimas = pd.Series(metricas_optimas)
metricas_optimas.name = "Métricas del Portafolio Optimo"
display(metricas_optimas)

Métricas del Portafolio Optimo

Retorno 31.01%
Volatilidad 22.10%
Sharpe 1.40

dtype: object

Paso 23: 10.000 carteras validas con pisos y techos para PAM/YPF/VIST

activos = [t for t in tickers if t != "SPY"]
data_returns = ret_diarios[activos].dropna()

np.random.seed(42)
TARGET = 10_000
BATCH = 50_000

media_retornos = data_returns.mean() x 252
matriz_cov = data_returns.cov() * 252
tickers_sim = data_returns.columns

alpha = np.full(len(tickers_sim), 6.0)

limitados = ["YPF", "PAM", "VIST"]

idx_lim = [tickers_sim.get_loc(t) for t in limitados if t in tickers_sim]
for i in idx_lim:

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 30/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab
alphalil = 2.0

floor = 0.018
cap = 0.03
valid = []

total_gen = 0

while sum(len(v) for v in valid) < TARGET:
W = np.random.dirichlet(alpha, size=BATCH)
total_gen += BATCH
ok = np.ones(len(W), dtype=bool)
if idx_lim:
ok & (W[:, idx_lim] <= cap).all(axis=1)
ok &= (W[:, idx_lim] >= floor).all(axis=1)
valid.append(W[ok])

W_keep = np.vstack(valid) [: TARGET]
print(f"Generadas: {total_gen:,} | Aceptadas: {W_keep.shapel[0]:,} | Tasa: {W_keep.shape[0]/total_gen:.1%}")

Métricas vectorizadas

rets = W_keep @ media_retornos.values

vols = (np.einsum('ij,jk,ik->i', W_keep, matriz_cov.values, W_keep))**0.5
sharpes = rets / vols

portafolios = pd.DataFrame({"Retorno": rets, "Volatilidad": vols, "Sharpe": sharpes})
portafolios["Pesos"] = list(W_keep.round(4))

Portafolio de maxima Sharpe
idx_max = portafolios["Sharpe"].idxmax()
mejor_portafolio = portafolios.loc[idx_max]

Pesos 6ptimos (%)

pesos_optimos = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).sort_values(ascending=False)
pesos_optimos_pct = (pesos_optimos * 100).round(2).astype(str) + 's'

display(pesos_optimos_pct)

Generadas: 750,000 | Aceptadas: 10,000 | Tasa: 1.3%
0

Ticker
NVDA 9.58%
KO 9.49%
AAPL 7.43%
GLD 7.07%
BRK-B 6.91%
AMZN 6.8%
PG 6.55%
MSFT 6.46%
GOOGL 6.25%
BTC-USD 3.82%

IEUR 3.29%
UNH 3.26%
PFE 3.06%
JNJ 2.95%

TSLA 2.93%

PAM 2.68%
MELI 2.47%
EEM 2.26%
DIs 1.96%
YPF 1.93%
VIST 1.83%
NKE 1.08%

dtype: object

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 31/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Paso 24: Visualizacién de la composicién del portafolio éptimo
plt.style.use("dark_background")

w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)
w_pct = (w * 100).round(2)
w_sorted = w_pct.sort_values(ascending=False)

cmap = mcolors.LinearSegmentedColormap.from_list("peso_grad", [(0.0,"#7400b8"),(0.5,"#5e60ce"),(1.0,"#80ffdb")])
norm = mcolors.Normalize(vmin=w_sorted.min() - 6, vmax=w_sorted.max() + 6)
colors = [cmap(norm(v)) for v in w_sorted[::-1]]

fig, ax = plt.subplots(figsize=(12,7))
ax.barh(w_sorted.index[::-1], w_sorted.values[::-1], color=colors, edgecolor="#222", linewidth=0.6)

ax.set_title("Pesos del Portafolio Optimo (Maxima Sharpe)", fontsize=16, color="white", pad=12)
ax.set_xlabel("Peso (%)", color="white"); ax.set_ylabel("")

ax.tick_params(colors="white")

ax.grid(False)

for y, v in enumerate(w_sorted.values[::-1]):
ax.text(v + 0.15, y, f"{v:.2f}%", va="center", color="white", fontsize=10)

ax.margins(x=0.15)
for sp in ax.spines.values(): sp.set_color("white")
plt.tight_layout(); plt.show()

Pesos del Portafolio Optimo (Maxima Sharpe)

NVDA
KO
AAPL
GLD
BRK-B
AMZN
PG
MSFT
GOOGL
BTC-USD
IEUR
UNH
PFE
JN]
TSLA
PAM
MELI
EEM
DIS
YPF
VIST
NKE

Paso 25: construir df_pais desde el portafolio 6ptimo

Pesos del portafolio éptimo (%)
w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)
w_pct = (w x 100).round(2)

Pais por ticker
paises = {}
for t in w_pct.index:
try:
info = yf.Ticker(t).info
paises[t] = info.get("country") or "Desconocido"
except Exception:
paises[t] = "Desconocido"

ETFs/cripto
fallback_pais = {

https://colab.research.google.com/drive/IFLDFSoonLfcY YsUtttPMqPFa4YMhGlex ?authuser=3#scrollTo=1MVwDGvDofY s&printMode=true 32/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

"GLD": "Global",
"EEM": "Global",
"IEUR": "Europa",
"BTC-USD": "Global",
"SPY": "United States"
}
for t, p in fallback_pais.items():
if t in w_pct.index and (paises.get(t) in [None, "Desconocido", ""]):
paises[t] = p

Overrides manuales
overrides_pais = {
"MELI": "Argentina - Latam",
"VIST": "Argentina",
"YPF": "Argentina",
"PAM": "Argentina",
}
for t, p in overrides_pais.items():
if t in w_pct.index:
paises[t] = p

DataFrame final para el sunburst
df_pais = (
pd.DataFrame({"Ticker": w_pct.index, "Peso": w_pct.values})
.assign(Pais=1lambda d: d["Ticker"].map(paises).fillna("Desconocido"))

Paso 26: Sunburst por pais/sector

import colorsys
import plotly.graph_objects as go

Paleta base por pais
colores_pais = {
"United States": "#9b5de5",
"Global": "#f15bb5",
"Europa": "#feed40",
"Argentina": "#@0bbf9o",
"Argentina - Latam": "#00f5d4",
"Desconocido": "#dee2ff"

def hex_to_rgb(hexstr)
hexstr = hexstr.lstrip("#")
return tuple(int(hexstr[i:i+2], 16) for i in (@, 2, 4))

def rgb_to_hex(rgb):
return "#%02x%02x%02x" % rgb

def shade_from_base(base_hex, t, darker_when_bigger=True):
r, g, b = hex_to_rgb(base_hex)
h, 1, s = colorsys.rgb_to_hls(r/255.0, g/255.0, b/255.0)
1_min, 1_max = 0.30, 0.70
L = T_max - tx(1_max — 1_min) if darker_when_bigger else 1_min + tx(1_max - 1_min)
R, G, B = colorsys.hls_to_rgb(h, L, s)
return rgb_to_hex((int(R*255), int(G%255), int(B%255)))

Jerarquia

root = "Portafolio"

labels = [root]

parents = [""]

values = [df_pais["Peso"].sum()]
colors ["#odof11"]

paises = df_pais["Pais"].unique().tolist()
peso_pais = df_pais.groupby("Pais") ["Peso"].sum()

Paises

for p in paises:
labels.append(p)
parents.append(root)
values.append(float(peso_pais.loc[p]l))
colors.append(colores_pais.get(p, "#4cc9fo"))

Tickers con degradé dentro de cada pais
for p in paises:
base = colores_pais.get(p, "#4cc9fo")
dfp = df_pais[df_pais["Pais"] == pl.copy().sort_values("Peso", ascending=False)
v = dfp["Peso"].values
t_norm = (v — v.min()) / (v.max() - v.min()) if v.max() !'= v.min() else [0.5]xlen(v)

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 33/35

30/11/25,10:19 a.m.

labels.append(tick)
parents.append(p)

values.append(float(peso))
colors.append(shade_from_base(base, t, darker_when_bigger=True))

Figura
fig = go.Figure(go.Sunburst(

))

Texto negro para sectores claros (Europa, IEUR, Argentina-Latam, MELI)
sectores_claros = ["Europa", "IEUR", "Argentina - Latam", "MELI"]

labels=1labels,
parents=parents,
values=values,
branchvalues="total",

Proyecto_Python_Cartera_Gino.ipynb - Colab
for (tick, peso, t) in zip(dfp["Ticker"1, dfp["Peso"], t_norm):

marker=dict(colors=colors, line=dict(color="rgba(13,15,17,1)", width=1.1)),

textinfo="1label+value+percent parent",

texttemplate="%{label}
%{value:.2f}%",

textfont=dict(color="white", size=12),

hovertemplate="%{label}
Peso: %{value:.2f}%
Del pais: %{percentParent:.1%}<extra></extra>",

fig.update_traces(

)

selector=dict(type="sunburst"),

textfont=dict(
color=[

"black" if any(k.lower() in l.lower() for k in sectores_claros) else "white"

for 1 in labels
1,
size=12

fig.update_layout(

)

title="Composicién del Portafolio por Pais",

paper_bgcolor="#0d0of11",
plot_bgcolor="#0dof11",

font=dict(color="#f5f5f5", family="Orbitron, sans-serif"),
margin=dict(1=10, r=10, t=50, b=10)

fig.show()

Paso 27: Treemap por pais/sector

import plotly.express as px

Pesos del dptimo (%)

w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)

w_pct = (w * 100).round(2)

Portafolio
100.01%

Global
13.15%

PFE
.06%

JINJ
.95% TSLA 7.07%
2.93% DI

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true

34/35

30/11/25,10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

Datos desde Yahoo Finance (sector)
sectores = {}
for t in tickers_sim:
try:
info = yf.Ticker(t).info
sectores[t] = info.get("sector") or '"Desconocido"
except Exception:
sectores[t] = '"Desconocido"

Fallbacks

fallback_sector = {
"GLD":"ETF/Commodity", "EEM":"ETF/Emergentes",
"IEUR":"ETF/Europa", "BTC-USD":"Cripto"

}

for t, s in fallback_sector.items():
if t in sectores and sectores[t] in [None, "Desconocido", ""1:

sectores[t] = s

DataFrame
df_sec = (
pd.DataFrame({"Ticker": w_pct.index, "Peso": w_pct.values})
.assign(Sector=1lambda d: d["Ticker"].map(sectores).fillna("Desconocido"))

)

Treemap

fig_treemap_sector = px.treemap(
df_sec,
path=["Sector","Ticker"], values="Peso", color="Peso",
color_continuous_scale=["#7400b8","#5e60ce", "#64dfdf" ,"#80ffdb"],
template="plotly_dark",
title="Composicidén por Sector"

)

Etiquetas

fig_treemap_sector.update_traces(
texttemplate="%{label}
%{value:.2f}%",
textfont_size=14,
textfont_color="white"

Cambiar solo NVDA a texto negro
for trace in fig_treemap_sector.data:
if hasattr(trace, "labels"):
new_colors = ["white"] *x len(trace.labels)
for i, label in enumerate(trace.labels):
if label in ["NVDA", "Technology", "Information Technology"]:
new_colors[i] = "black"
trace.textfont = dict(color=new_colors)

fig_treemap_sector.update_layout(margin=dict(1=10, r=10, t=40, b=10))
fig_treemap_sector.show()

Technology Consumer Cyclical Communication Services

NVDA IS
9.58% 1:96%

MELI
2.47%

Energy ETF/Europa

YPF IEUR
1.93% 3.29%

Healthcare

UNH
3.26%

Utilities ETF/Emergentes

Sheld PAM EEM

BTC-USD 2.68% 2.26%
3.82%

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4Y MhGlex ?authuser=3#scrollTo=1MVwDGvDof Y s&printMode=true 35/35

