
Paso 1: Instalar librerías del proyecto
!pip -q install --upgrade pip
!pip -q install yfinance pandas numpy matplotlib seaborn statsmodels pandas-datareader scikit-learn
!pip install PyPortfolioOpt

Requirement already satisfied: PyPortfolioOpt in /usr/local/lib/python3.12/dist-packages (1.5.6)
Requirement already satisfied: cvxpy>=1.1.19 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (1.
Requirement already satisfied: ecos<3.0.0,>=2.0.14 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOp
Requirement already satisfied: numpy>=1.26.0 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (2.
Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (2.2
Requirement already satisfied: plotly<6.0.0,>=5.0.0 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioO
Requirement already satisfied: scipy>=1.3 in /usr/local/lib/python3.12/dist-packages (from PyPortfolioOpt) (1.16.
Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.12/dist-packages (from plotly<6.0.0,>=5.
Requirement already satisfied: packaging in /usr/local/lib/python3.12/dist-packages (from plotly<6.0.0,>=5.0.0->P
Requirement already satisfied: osqp>=0.6.2 in /usr/local/lib/python3.12/dist-packages (from cvxpy>=1.1.19->PyPort
Requirement already satisfied: clarabel>=0.5.0 in /usr/local/lib/python3.12/dist-packages (from cvxpy>=1.1.19->Py
Requirement already satisfied: scs>=3.2.4.post1 in /usr/local/lib/python3.12/dist-packages (from cvxpy>=1.1.19->P
Requirement already satisfied: cffi in /usr/local/lib/python3.12/dist-packages (from clarabel>=0.5.0->cvxpy>=1.1.
Requirement already satisfied: jinja2 in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.1.19
Requirement already satisfied: setuptools in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.
Requirement already satisfied: joblib in /usr/local/lib/python3.12/dist-packages (from osqp>=0.6.2->cvxpy>=1.1.19
Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.
Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.19->PyPort
Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.12/dist-packages (from pandas>=0.19->PyPo
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.8.2->
Requirement already satisfied: pycparser in /usr/local/lib/python3.12/dist-packages (from cffi->clarabel>=0.5.0->
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.12/dist-packages (from jinja2->osqp>=0.6

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 1/35

Paso 2: Importar librerías y chequear versiones

import sys, platform, warnings, datetime as dt
import numpy as np
import pandas as pd
import yfinance as yf
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import statsmodels.api as sm
import pandas_datareader.data as web
import os, datetime as dt
import math

from pypfopt import EfficientFrontier, risk_models, expected_returns, DiscreteAllocation

warnings.filterwarnings("ignore")

Mostrar versiones
print("Python:", sys.version.split()[0])
print("OS:", platform.platform())
print("pandas:", pd.__version__)
print("numpy:", np.__version__)
print("matplotlib:", mpl.__version__)
print("seaborn:", sns.__version__)
print("yfinance:", yf.__version__)
print("statsmodels:", sm.__version__)

Configuración de gráficos
plt.rcParams["figure.figsize"] = (10, 5)
plt.rcParams["axes.grid"] = True

Fechas del proyecto
START_DATE = "2022-01-01"
END_DATE = dt.date.today().strftime("%Y-%m-%d")
print("Rango de análisis:", START_DATE, "→", END_DATE)

Semilla para reproducibilidad
np.random.seed(42)

Definir tickers
CEDEARS_BA = [
 "AAPL.BA","MSFT.BA","NVDA.BA","AMZN.BA","TSLA.BA","DIS.BA","GOOGL.BA",
 "MELI.BA","BRK.BA","KO.BA","JNJ.BA","PG.BA","PFE.BA","NKE.BA",
 "GLD.BA","EEM.BA","IEUR.BA","YPF.BA","PAMP.BA","VIST.BA"
]
CRYPTO = ["BTC-USD"]
BENCH = ["SPY"]

print("CEDEARs:", len(CEDEARS_BA), "Crypto:", CRYPTO, "Benchmark:", BENCH)

Python: 3.12.12
OS: Linux-6.6.105+-x86_64-with-glibc2.35
pandas: 2.2.2
numpy: 2.0.2
matplotlib: 3.10.0
seaborn: 0.13.2
yfinance: 0.2.66
statsmodels: 0.14.5
Rango de análisis: 2022-01-01 → 2025-11-30
CEDEARs: 20 Crypto: ['BTC-USD'] Benchmark: ['SPY']

Paso 3: Montar Google Drive y definir rutas del proyecto

from google.colab import drive
drive.mount('/content/drive', force_remount=True)

import os

Nombre exacto de tu carpeta en Drive
BASE_DIR = "/content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino"

Subcarpetas para organizar
DATA_DIR = os.path.join(BASE_DIR, "data")
FIGS_DIR = os.path.join(BASE_DIR, "figs")
os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(FIGS_DIR, exist_ok=True)

print("Carpeta base:", BASE_DIR)
print("Carpeta data:", DATA_DIR)

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 2/35

print("Carpeta figs:", FIGS_DIR)

Mounted at /content/drive
Carpeta base: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino
Carpeta data: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino/data
Carpeta figs: /content/drive/MyDrive/Colab Notebooks/Proyecto Python Cartera Gino/figs

Paso 4: Definir tickers y mostrar tabla (sin SPY)

tickers = [
 "AAPL","MSFT","NVDA","AMZN","TSLA","DIS","GOOGL",
 "MELI","BRK-B","KO","JNJ","PG","PFE","NKE",
 "GLD","EEM","IEUR","YPF","PAM","VIST",
 "UNH",
 "BTC-USD","SPY"
]

Excluir SPY
tickers_sin_spy = [t for t in tickers if t != "SPY"]

Ordenar
tickers_sorted = sorted(tickers_sin_spy)

Crear DataFrame
df_tickers = pd.DataFrame({"Ticker": tickers_sorted})
df_tickers.index = df_tickers.index + 1
df_tickers.index.name = "N°"

Mostrar con estilo oscuro
display(
 df_tickers.style
 .set_caption("Listado de Tickers del Portafolio (Orden Alfabético, sin SPY)")
 .set_table_styles([
 {"selector": "th", "props": [
 ("background-color", "#1E1E1E"),
 ("color", "white"),
 ("padding", "6px 10px"),
 ("font-size", "12px"),
 ("border", "1px solid #444"),
 ("text-align", "center")
]},
 {"selector": "td", "props": [
 ("background-color", "#2B2B2B"),
 ("color", "#E0E0E0"),
 ("padding", "6px 10px"),
 ("font-size", "12px"),
 ("border", "1px solid #444"),
 ("text-align", "center")
]},
 {"selector": "caption", "props": [
 ("caption-side", "top"),
 ("font-size", "14px"),
 ("font-weight", "bold"),
 ("color", "#E0E0E0"),
 ("text-align", "center"),
 ("padding", "6px")
]}
])
)

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 3/35

Listado de
Tickers del
Portafolio

(Orden
Alfabético, sin

SPY)

 Ticker

N°

1 AAPL

2 AMZN

3 BRK-B

4 BTC-USD

5 DIS

6 EEM

7 GLD

8 GOOGL

9 IEUR

10 JNJ

11 KO

12 MELI

13 MSFT

14 NKE

15 NVDA

16 PAM

17 PFE

18 PG

19 TSLA

20 UNH

21 VIST

22 YPF

Paso 5: Descargar precios ajustados (2022 → hoy)

raw = yf.download(
 tickers,
 start="2022-01-01",
 end=dt.date.today().strftime("%Y-%m-%d"),
 auto_adjust=True,
 progress=False
)

Selección de precios de cierre
if isinstance(raw.columns, pd.MultiIndex):
 data = raw.xs('Close', level=0, axis=1).copy()
else:
 data = raw['Close'].copy()

Eliminación de filas con faltantes
data = data.dropna()

Vista rápida
print("Dimensiones:", data.shape)
data.head()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 4/35

Dimensiones: (981, 23)
Ticker AAPL AMZN BRK-B BTC-USD DIS EEM GLD GOOGL IEUR JNJ

Date

2022-
01-03 178.270340 170.404495 300.790009 46458.117188 154.189529 45.263573 168.330002 143.998322 52.333141 152.576859

2022-
01-04 176.007782 167.522003 308.529999 45897.574219 153.176422 45.107178 169.570007 143.410385 52.449081 152.167725

2022-
01-05 171.326019 164.356995 309.920013 43569.003906 152.645294 44.371185 169.059998 136.831268 52.012081 153.181717

2022-
01-06 168.466019 163.253998 313.220001 43160.929688 154.327240 44.573582 166.990005 136.803955 51.798042 152.656937

2022-
01-07 168.632492 162.554001 319.779999 41557.902344 155.242004 44.978378 167.750000 136.078461 52.074509 154.720444

5 rows × 23 columns

import matplotlib.pyplot as plt
plt.style.use("dark_background")

Paso 6: Precios base 100
from matplotlib import patheffects as pe
from cycler import cycler

Cálculo base 100
base100 = data.div(data.iloc[0]).mul(100)

print("Dimensiones base100:", base100.shape)
display(base100.head())

Últimos valores y top 5
last_values = base100.iloc[-1].sort_values(ascending=False)
top_tickers = last_values.head(5).index.tolist()

Gráfico
with plt.style.context('default'):
 fig, ax = plt.subplots(figsize=(17, 6))
 ax.set_facecolor("white")
 fig.patch.set_facecolor("white")

 # Líneas grises para los no destacados
 ax.plot(base100.index, base100.values, color="#adb5bd",
 linewidth=0.8, alpha=0.6, zorder=1)

 # Colores para los top 5 (dinámicos, sin hardcodear tickers)
 paleta_top5 = ["#14213d", "#00b4d8", "#38b000", "#fca311", "#ef476f"]
 color_map = dict(zip(top_tickers, paleta_top5))

 # Top 5 destacados
 for t in top_tickers:
 ax.plot(base100.index, base100[t],
 color=color_map.get(t, "#333333"),
 linewidth=1.8, zorder=3, label=t)

 # Coordenadas para etiquetas
 y_last = {t: float(base100[t].iloc[-1]) for t in top_tickers}
 ordered = sorted(top_tickers, key=lambda k: y_last[k])
 ymin, ymax = ax.get_ylim()
 pad = (ymax - ymin) * 0.05
 y_targets = np.linspace(
 max(ymin + pad, min(y_last.values())),
 min(ymax - pad, max(y_last.values())),
 num=len(ordered)
)
 last_x = base100.index[-1]
 x_text = last_x + pd.Timedelta(days=80)

 # Etiquetas de color con líneas guía
 for t, y_tgt in zip(ordered, y_targets):
 c = color_map.get(t, "#000000")
 ax.annotate(
 "",
 xy=(x_text, y_tgt),
 xytext=(last_x, y_last[t]),
 arrowprops=dict(arrowstyle="-", color=c, lw=1, alpha=0.9),
 zorder=4

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 5/35

)
 ax.text(
 x_text, y_tgt, f"{t}",
 va="center", ha="left",
 fontsize=10, color=c, fontweight="bold",
 bbox=dict(boxstyle="round,pad=0.25",
 fc="white", ec=c, lw=0.5, alpha=0.95),
 path_effects=[pe.withStroke(linewidth=1, foreground="white")],
 zorder=5
)

 # Ejes y estilo general
 ax.set_title("Precios base 100 (inicio = 100)",
 fontsize=14, color="black", pad=10)
 ax.set_ylabel("Índice", color="black")
 ax.tick_params(colors="black")
 ax.spines["bottom"].set_color("black")
 ax.spines["left"].set_color("black")
 ax.grid(True, color="#e6e6e6", linestyle="--",
 linewidth=0.7, alpha=0.8)
 ax.set_xlim(base100.index[0],
 base100.index[-1] + pd.Timedelta(days=300))

 # Leyenda lateral
 handles, labels = ax.get_legend_handles_labels()
 otros_tickers = [t for t in base100.columns if t not in top_tickers]
 for t in otros_tickers:
 h, = ax.plot([], [], color="#c7c7c7", lw=1, label=t)
 handles.append(h)
 labels.append(t)

 leg = ax.legend(
 handles, labels,
 title="Tickers (Top 5 destacados)",
 frameon=True, facecolor="white", edgecolor="#999",
 fontsize=8, ncol=1,
 loc='center left', bbox_to_anchor=(1.01, 0.5)
)

 plt.tight_layout(rect=[0, 0, 0.85, 1])
 plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 6/35

Dimensiones base100: (981, 23)
Ticker AAPL AMZN BRK-B BTC-USD DIS EEM GLD GOOGL IEUR JNJ

Date

2022-
01-03 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000 100.000000

2022-
01-04 98.730828 98.308441 102.573221 98.793444 99.342947 99.654479 100.736652 99.591706 100.221542 99.731851

2022-
01-05 96.104612 96.451091 103.035342 93.781252 98.998482 98.028465 100.433669 95.022822 99.386507 100.396429

2022-
01-06 94.500307 95.803809 104.132449 92.902882 100.089313 98.475615 99.203947 95.003854 98.977514 100.052484

2022-
01-07 94.593690 95.393024 106.313371 89.452403 100.682585 99.369925 99.655438 94.500033 99.505796 101.404922

5 rows × 23 columns

Paso 7: Gráficos individuales de precios ajustados

import matplotlib.dates as mdates

n = len(data.columns)
cols = 3
rows = math.ceil(n / cols)

fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(18, 4*rows), sharex=True)
axes = axes.flatten()

for i, ticker in enumerate(data.columns):
 axes[i].plot(data.index, data[ticker], lw=1.5, color="#ccff33")
 axes[i].set_title(ticker, fontsize=10)
 axes[i].tick_params(axis='x', labelbottom=True)
 axes[i].grid(True, color="#d3d3d3", linestyle="--", linewidth=0.5, alpha=0.7)

for j in range(i+1, len(axes)):
 fig.delaxes(axes[j])

date_format = mdates.DateFormatter('%m-%Y')
for ax in axes:
 ax.xaxis.set_major_formatter(date_format)
 ax.tick_params(axis='x', rotation=45)

plt.suptitle("Evolución individual de precios ajustados (2022–2025)", fontsize=14)
plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 7/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 8/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 9/35

Paso 8: Retornos diarios
ret_diarios = data.pct_change().dropna()
print("Dimensiones retornos diarios:", ret_diarios.shape)
display(ret_diarios.head())

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 10/35

Dimensiones retornos diarios: (980, 23)
Ticker AAPL AMZN BRK-B BTC-USD DIS EEM GLD GOOGL IEUR JNJ ... NKE

Date

2022-
01-04 -0.012692 -0.016916 0.025732 -0.012066 -0.006571 -0.003455 0.007367 -0.004083 0.002215 -0.002681 ... 0.010445

2022-
01-05 -0.026600 -0.018893 0.004505 -0.050734 -0.003467 -0.016317 -0.003008 -0.045876 -0.008332 0.006664 ... -0.024881

2022-
01-06 -0.016693 -0.006711 0.010648 -0.009366 0.011019 0.004561 -0.012244 -0.000200 -0.004115 -0.003426 ... -0.007457

2022-
01-07 0.000988 -0.004288 0.020944 -0.037141 0.005927 0.009082 0.004551 -0.005303 0.005337 0.013517 ... -0.025273

2022-
01-10 0.000116 -0.006570 -0.002658 0.006337 -0.007793 0.000000 0.003040 0.012061 -0.012845 -0.004944 ... -0.041601

5 rows × 23 columns

Paso 9: Matriz de correlaciones
correlacion = ret_diarios.corr()

plt.figure(figsize=(12, 10))
ax = sns.heatmap(
 correlacion,
 annot=True,
 cmap='Blues',
 center=0,
 linewidths=0.7,
 fmt=".2f",
 square=True,
 cbar_kws={"shrink": 0.8}
)

ax.grid(False)
ax.tick_params(left=False, bottom=False)

plt.title('Matriz de Correlación de Retornos Diarios', fontsize=16)
plt.xticks(rotation=45)
plt.yticks(rotation=0)
plt.tight_layout()
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 11/35

Paso 10: Histogramas de retornos diarios

n = len(ret_diarios.columns)
cols = 3
rows = math.ceil(n / cols)

fig, axes = plt.subplots(rows, cols, figsize=(18, 4*rows))
axes = axes.flatten()

for i, ticker in enumerate(ret_diarios.columns):
 axes[i].hist(
 ret_diarios[ticker],
 bins=50,
 alpha=0.8,
 color="#ffdd00",
 edgecolor="#222222",
 linewidth=0.5
)
 # Línea vertical en 0%
 axes[i].axvline(0, color="red", linestyle="--", linewidth=1)

 axes[i].set_title(ticker, fontsize=10)
 axes[i].grid(True, linestyle="--", color="#d3d3d3", alpha=0.6)

Eliminar ejes vacíos
for j in range(i+1, len(axes)):
 fig.delaxes(axes[j])

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 12/35

plt.suptitle("Distribución de retornos diarios (2022–2025)", fontsize=14)
plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 13/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 14/35

Paso 11: Boxplots comparativos de retornos diarios

Ordenar tickers por volatilidad (descendente)
order = ret_diarios.std().sort_values(ascending=False).index

Paleta de color (de rojo a verde)
paleta = sns.color_palette("RdYlGn", n_colors=len(order))

plt.figure(figsize=(16, 7))

Configuración de los outliers con contorno
flier_props = dict(
 marker='o',
 markerfacecolor='#00FFFF', # relleno
 markeredgecolor='#00334d', # contorno
 markeredgewidth=0.5, # grosor del contorno
 markersize=7.5,
 alpha=1
)

Propiedades visuales adicionales
box_props = dict(edgecolor='black', linewidth=1.3) # borde de cada caja
median_props = dict(color='black', linewidth=1.3) # línea mediana

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 15/35

whisker_props = dict(color='white', linewidth=1.1) # bigotes visibles
cap_props = dict(color='white', linewidth=1.1) # extremos de los bigotes

Crear el boxplot
sns.boxplot(
 data=ret_diarios[order],
 palette=paleta,
 showfliers=True,
 linewidth=1.3,
 width=0.6,
 flierprops=flier_props,
 boxprops=box_props,
 medianprops=median_props,
 whiskerprops=whisker_props,
 capprops=cap_props
)

sns.despine()
plt.title("Distribución de Retornos Diarios (ordenado por volatilidad)", fontsize=14, pad=12)
plt.ylabel("Retorno diario")
plt.xticks(rotation=45, ha="right")
plt.grid(axis="y", linestyle="--", alpha=0.35)
plt.tight_layout()
plt.show()

Paso 12: Estadísticas descriptivas

Básicas (diarias)
stats = ret_diarios.describe(percentiles=[.01,.05,.25,.5,.75,.95,.99]).T

Métricas adicionales
stats["skew"] = ret_diarios.skew()
stats["kurt"] = ret_diarios.kurt()

Anualizadas
stats["mean_ann"] = ret_diarios.mean() * 252
stats["vol_ann"] = ret_diarios.std() * np.sqrt(252)

Ordenar por volatilidad anualizada
stats = stats.sort_values("vol_ann", ascending=False)

display(stats.round(4))

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 16/35

count mean std min 1% 5% 25% 50% 75% 95% 99% max skew kurt mean_

Ticker

TSLA 980.0 0.0008 0.0392 -0.1543 -0.0974 -0.0615 -0.0207 0.0010 0.0221 0.0622 0.1011 0.2269 0.2911 2.8194 0.2

YPF 980.0 0.0029 0.0360 -0.1534 -0.0731 -0.0489 -0.0182 0.0014 0.0203 0.0630 0.0895 0.3989 1.7219 16.6787 0.7

NVDA 980.0 0.0024 0.0342 -0.1697 -0.0781 -0.0522 -0.0176 0.0030 0.0216 0.0529 0.0898 0.2437 0.5402 4.6781 0.6

BTC-
USD 980.0 0.0012 0.0335 -0.2268 -0.0854 -0.0505 -0.0159 0.0004 0.0175 0.0555 0.0979 0.1987 0.0349 5.4983 0.3

VIST 980.0 0.0028 0.0330 -0.1098 -0.0781 -0.0493 -0.0170 0.0008 0.0208 0.0567 0.0979 0.1866 0.5641 2.6270 0.7

MELI 980.0 0.0010 0.0324 -0.1688 -0.0925 -0.0493 -0.0143 0.0011 0.0176 0.0513 0.0918 0.1616 -0.0411 3.5359 0.2

PAM 980.0 0.0020 0.0301 -0.1670 -0.0620 -0.0433 -0.0160 0.0011 0.0182 0.0477 0.0781 0.2375 0.7165 5.9076 0.5

AMZN 980.0 0.0006 0.0238 -0.1405 -0.0613 -0.0358 -0.0123 0.0004 0.0139 0.0358 0.0653 0.1354 0.1639 4.6563 0.1

NKE 980.0 -0.0006 0.0227 -0.1998 -0.0582 -0.0318 -0.0114 -0.0006 0.0105 0.0317 0.0602 0.1519 -0.5725 12.5371 -0.1

GOOGL 980.0 0.0010 0.0207 -0.0951 -0.0497 -0.0313 -0.0109 0.0014 0.0120 0.0318 0.0563 0.1022 0.0850 2.9255 0.2

UNH 980.0 -0.0002 0.0201 -0.2238 -0.0607 -0.0264 -0.0083 0.0006 0.0092 0.0250 0.0522 0.1198 -2.1078 24.9787 -0.0

DIS 980.0 -0.0002 0.0191 -0.1316 -0.0505 -0.0286 -0.0093 -0.0003 0.0095 0.0294 0.0449 0.1189 -0.0458 7.7154 -0.0

AAPL 980.0 0.0006 0.0181 -0.0925 -0.0481 -0.0291 -0.0082 0.0010 0.0096 0.0262 0.0455 0.1533 0.5422 7.2587 0.1

MSFT 980.0 0.0006 0.0170 -0.0772 -0.0423 -0.0268 -0.0080 0.0007 0.0098 0.0255 0.0428 0.1013 0.2497 3.3064 0.1

PFE 980.0 -0.0005 0.0157 -0.0672 -0.0399 -0.0237 -0.0102 -0.0008 0.0085 0.0262 0.0426 0.0683 0.2464 1.6661 -0.1

EEM 980.0 0.0003 0.0117 -0.0556 -0.0285 -0.0182 -0.0060 0.0005 0.0070 0.0181 0.0299 0.0805 0.4090 4.2452 0.0

IEUR 980.0 0.0004 0.0115 -0.0668 -0.0304 -0.0169 -0.0062 0.0007 0.0065 0.0171 0.0294 0.0785 0.2445 4.7634 0.0

SPY 980.0 0.0005 0.0114 -0.0585 -0.0322 -0.0171 -0.0051 0.0006 0.0064 0.0178 0.0264 0.1050 0.3614 9.0120 0.1

PG 980.0 0.0001 0.0113 -0.0623 -0.0277 -0.0176 -0.0058 0.0004 0.0066 0.0166 0.0284 0.0427 -0.4853 3.2657 0.0

BRK-B 980.0 0.0006 0.0112 -0.0691 -0.0282 -0.0169 -0.0055 0.0007 0.0070 0.0172 0.0292 0.0584 -0.0146 3.8880 0.1

JNJ 980.0 0.0004 0.0109 -0.0759 -0.0262 -0.0161 -0.0053 0.0004 0.0059 0.0161 0.0286 0.0619 0.1133 5.5538 0.0

KO 980.0 0.0004 0.0102 -0.0696 -0.0256 -0.0151 -0.0057 0.0006 0.0060 0.0164 0.0265 0.0473 -0.2652 4.1147 0.0

GLD 980 0 0 0009 0 0101 0 0643 0 0241 0 0155 0 0050 0 0008 0 0066 0 0173 0 0275 0 0370 0 1919 2 3598 0 2

Paso 13: Diagramas de dispersión de cada activo vs SPY

tickers = [t for t in ret_diarios.columns if t != "SPY"]

n = len(tickers)
cols = 4
rows = (n + cols - 1) // cols

fig, axes = plt.subplots(rows, cols, figsize=(18, 4*rows))
axes = axes.flatten()

for i, t in enumerate(tickers):
 ax = axes[i]
 ax.scatter(
 ret_diarios["SPY"],
 ret_diarios[t],
 s=20, # tamaño de los puntos
 alpha=1, # transparencia
 facecolors="#00ffe7", # color de relleno
 edgecolors="#004d40", # contorno oscuro
 linewidths=0.5 # grosor del contorno
)
 ax.set_title(t, fontsize=9)
 ax.set_xlabel("SPY")
 ax.set_ylabel(t)
 ax.grid(True, color="#cccccc", linestyle="--", alpha=0.4)

Quitar subplots vacíos
for j in range(i+1, len(axes)):
 fig.delaxes(axes[j])

plt.suptitle("Dispersión de retornos diarios vs SPY", fontsize=14)
plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 17/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 18/35

Paso 14: Dispersión vs SPY

tickers = [t for t in ret_diarios.columns if t != "SPY"]
n, cols = len(tickers), 4
rows = (n + cols - 1) // cols

fig, axes = plt.subplots(rows, cols, figsize=(18, 4*rows), facecolor="#111111")
axes = axes.flatten()

for i, t in enumerate(tickers):
 ax = axes[i]
 ax.set_facecolor("#111111")

 # Puntos de dispersión
 ax.scatter(
 ret_diarios["SPY"], ret_diarios[t],
 alpha=0.7,
 s=20,
 facecolors="#00FFE7", # relleno turquesa brillante
 edgecolors="#003F3C", # contorno verde petróleo oscuro
 linewidths=0.5
)

 # Línea de regresión amarilla (Beta)
 sns.regplot(
 x=ret_diarios["SPY"], y=ret_diarios[t],
 scatter=False, ax=ax, color="#ffeb3b", ci=None,
 line_kws={"lw":1.8}
)
Intervalos de confianza (líneas blancas difusas)
 for _ in range(3):
 sns.regplot(
 x=ret_diarios["SPY"], y=ret_diarios[t],
 scatter=False, ax=ax, color="white", ci=95,
 line_kws={"lw": 0.5, "alpha": 0.15}
)

 # Estilo de cada subplot
 ax.set_title(t, fontsize=10, fontweight="bold", color="white")
 ax.tick_params(colors="white")
 ax.xaxis.label.set_color("white")
 ax.yaxis.label.set_color("white")
 ax.grid(True, linestyle="--", alpha=0.2, color="white")

Quitar subplots vacíos
for j in range(i+1, len(axes)):
 fig.delaxes(axes[j])

plt.suptitle("Dispersión vs SPY (Beta + intervalo de confianza 95%)",
 fontsize=15, fontweight="bold", color="white", y=1.02)
plt.tight_layout()
plt.subplots_adjust(top=0.93)
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 19/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 20/35

Paso 15: Ratios Performance

retornos = ret_diarios.copy()
activos = [t for t in tickers if t != "SPY"]
benchmark = "SPY"

r = retornos[activos + [benchmark]].dropna(how="any")
rm = r[benchmark]
ra = r[activos]

mu_anual = ra.mean() * 252
vol_anual = ra.std() * (252 ** 0.5)

rf_anual = 0.05
sharpe = (mu_anual - rf_anual) / vol_anual

downside = ra.where(ra < 0, 0.0)
down_vol_a = downside.std() * (252 ** 0.5)
sortino = (mu_anual - rf_anual) / down_vol_a

var_mkt = np.var(rm, ddof=0)
betas = pd.Series({t: (np.cov(ra[t], rm, ddof=0)[0,1] / var_mkt) if var_mkt!=0 else np.nan for t in activos})

treynor = (mu_anual - rf_anual) / betas

ratios = (
 pd.DataFrame({
 "Sharpe": sharpe,
 "Sortino": sortino,
 "Treynor": treynor
 })
 .replace([np.inf, -np.inf], np.nan)
 .round(3)
 .sort_index()
)

ratios

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 21/35

Sharpe Sortino Treynor

Ticker

AAPL 0.369 0.626 0.087

AMZN 0.270 0.454 0.067

BRK-B 0.582 0.985 0.162

BTC-USD 0.497 0.842 0.219

DIS -0.343 -0.549 -0.100

EEM 0.076 0.131 0.020

GLD 1.110 1.918 1.708

GOOGL 0.637 1.087 0.168

IEUR 0.217 0.369 0.052

JNJ 0.251 0.425 0.225

KO 0.284 0.470 0.156

MELI 0.381 0.627 0.119

MSFT 0.348 0.591 0.082

NKE -0.581 -0.898 -0.187

NVDA 1.016 1.832 0.257

PAM 0.943 1.754 0.488

PFE -0.678 -1.156 -0.375

PG -0.182 -0.285 -0.105

TSLA 0.259 0.448 0.079

UNH -0.282 -0.396 -0.226

VIST 1.253 2.382 0.720

YPF 1.183 2.355 0.626

Próximos pasos: Generar código con ratios New interactive sheet

Paso 16: Implementación modelo Fama-French de 3 factores

Descargar factores Fama-French (diarios)
url = "https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/F-F_Research_Data_Factors_daily_CSV.zip"
factors = pd.read_csv(url, skiprows=3)

factors = factors.rename(columns={"Unnamed: 0": "Date"})
factors = factors[factors["Date"].str.isnumeric()]
factors["Date"] = pd.to_datetime(factors["Date"], format="%Y%m%d")
factors = factors.set_index("Date").astype(float) / 100
factors = factors[["Mkt-RF", "SMB", "HML", "RF"]]

Unión con retornos diarios (ajustar nombre de tu variable: ret_diarios)
data_ff = ret_diarios.join(factors, how="inner")

import statsmodels.api as sm

ff_results = {}
for ticker in [t for t in tickers if t != "SPY"]: # todos menos SPY
 Ri = data_ff[ticker] - data_ff["RF"]
 X = data_ff[["Mkt-RF", "SMB", "HML"]]
 X = sm.add_constant(X)
 modelo = sm.OLS(Ri, X).fit()
 ff_results[ticker] = {
 "Alpha": round(modelo.params["const"], 4),
 "Beta_Mkt": round(modelo.params["Mkt-RF"], 4),
 "Beta_SMB": round(modelo.params["SMB"], 4),
 "Beta_HML": round(modelo.params["HML"], 4),
 "R2_ajustado": round(modelo.rsquared_adj, 4)
 }

ff_table = pd.DataFrame(ff_results).T.sort_index()
ff_table

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 22/35

Alpha Beta_Mkt Beta_SMB Beta_HML R2_ajustado

AAPL 0.0000 1.1742 -0.2847 -0.2316 0.6072

AMZN 0.0001 1.3683 -0.1500 -0.5443 0.5893

BRK-B 0.0000 0.8262 -0.2429 0.5187 0.5980

BTC-USD 0.0012 0.9932 0.6647 -0.2659 0.2008

DIS -0.0006 1.0483 0.1162 0.1607 0.4088

EEM -0.0001 0.6676 0.1354 -0.0030 0.4979

GLD 0.0007 0.0798 0.0573 0.0036 0.0097

GOOGL 0.0004 1.1186 -0.2606 -0.4583 0.5130

IEUR -0.0001 0.7889 0.0304 0.1654 0.5943

JNJ -0.0000 0.2809 -0.1890 0.2515 0.0810

KO -0.0001 0.3933 -0.3204 0.1991 0.1646

MELI 0.0007 1.3549 0.2995 -0.8185 0.4110

MSFT 0.0001 1.0472 -0.4451 -0.4927 0.6685

NKE -0.0011 1.0415 0.2825 0.0152 0.3278

NVDA 0.0018 1.8642 -0.4664 -1.1104 0.5988

PAM 0.0015 1.0008 0.0199 0.3530 0.1302

PFE -0.0009 0.5099 -0.0666 0.2683 0.1177

PG -0.0003 0.3769 -0.3284 0.0889 0.1271

TSLA 0.0003 1.7855 0.3944 -0.5493 0.3873

UNH -0.0005 0.4541 -0.1546 0.1807 0.0523

VIST 0.0022 1.1152 -0.0471 0.7129 0.1314

YPF 0.0023 1.2640 -0.0162 0.6824 0.1410

Próximos pasos: Generar código con ff_table New interactive sheet

Paso 17: Heatmap de betas

betas_ff = ff_table[["Beta_Mkt","Beta_SMB","Beta_HML"]]

plt.figure(figsize=(18, 6))
ax = sns.heatmap(
 betas_ff.T,
 annot=True,
 cmap='Blues',
 center=0,
 linewidths=0.7,
 fmt=".2f",
 cbar_kws={"shrink": 0.6}
)

ax.grid(False)
ax.tick_params(left=False, bottom=False, labelsize=11)

plt.title('Betas Fama–French (3 Factores)', fontsize=18, pad=20)
plt.xticks(rotation=45, ha="right", fontsize=11)
plt.yticks(rotation=0, fontsize=12)
plt.tight_layout()
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 23/35

Paso 18: Visualización Betas, Alpha, R² ajustado

import matplotlib.colors as mcolors

Betas
betas = ff_table[["Beta_Mkt", "Beta_SMB", "Beta_HML"]].sort_values("Beta_Mkt", ascending=False)

x = np.arange(len(betas.index))
width = 0.25
metrics = betas.columns
colors = ["#f4f1bb", "#9bc1bc", "#ed6a5a"]

plt.figure(figsize=(15, 6))
for i, metric in enumerate(metrics):
 plt.bar(x + i * width, betas[metric], width, label=metric, color=colors[i])

Líneas divisorias verticales grises
for i in range(len(betas.index) - 1):
 xpos = x[i] + width * len(metrics)
 plt.axvline(x=xpos - width/2, color="gray", linestyle="--", linewidth=0.7)

Estilo general
plt.xticks(x + width, betas.index, rotation=45, color="white")
plt.title("Sensibilidades (Betas) a los factores Fama-French", color="white", pad=10)
plt.ylabel("Valor de la Beta", color="white")
plt.legend(title="Factor", facecolor="black", edgecolor="white", labelcolor="white")
plt.grid(False)

Eje X
ax = plt.gca()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines["bottom"].set_linewidth(1)
ax.spines["left"].set_color("white")
ax.spines["left"].set_linewidth(1)
ax.tick_params(axis='x', colors='white')
ax.tick_params(axis='y', colors='white')

plt.axhline(0, color="white", linewidth=1.0)

plt.tight_layout(pad=3.0)
plt.show()

Alpha
alpha_sorted = ff_table.sort_values("Alpha", ascending=False)["Alpha"]
colors = ["#48cae4" if v > 0 else "#caf0f8" for v in alpha_sorted]

plt.figure(figsize=(15,6))

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 24/35

alpha_sorted.plot(kind="bar", color=colors)
plt.axhline(0, color="white", linewidth=0.8)
plt.title("Alpha de Jensen según modelo Fama-French", color="white")
plt.ylabel("Alpha (diario)", color="white")
plt.grid(False)

Eje X
ax = plt.gca()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines["bottom"].set_linewidth(1)
ax.tick_params(axis='x', colors='white')

plt.tight_layout(pad=3.0)
plt.show()

R² Ajustado
r2_sorted = ff_table.sort_values("R2_ajustado", ascending=False)["R2_ajustado"]

cmap = mcolors.LinearSegmentedColormap.from_list("custom_violet", ["#e0c6ff", "#7400b8"])
norm = mcolors.Normalize(vmin=r2_sorted.min(), vmax=r2_sorted.max())
colors = [cmap(norm(v)) for v in r2_sorted]

plt.figure(figsize=(15,6))
r2_sorted.plot(kind="bar", color=colors)
plt.axhline(0, color="white", linewidth=0.8)
plt.title("R² ajustado de las regresiones Fama-French", color="white")
plt.ylabel("R² ajustado", color="white")
plt.grid(False)

Eje X
ax = plt.gca()
ax.set_facecolor("#000000")
ax.spines["bottom"].set_color("white")
ax.spines["bottom"].set_linewidth(1)
ax.tick_params(axis='x', colors='white')

plt.tight_layout(pad=3.0)
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 25/35

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 26/35

!pip install adjustText

Requirement already satisfied: adjustText in /usr/local/lib/python3.12/dist-packages (1.3.0)
Requirement already satisfied: numpy in /usr/local/lib/python3.12/dist-packages (from adjustText) (2.0.2)
Requirement already satisfied: matplotlib in /usr/local/lib/python3.12/dist-packages (from adjustText) (3.10.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.12/dist-packages (from adjustText) (1.16.3)
Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adju
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adjustTe
Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adj
Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adj
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adjus
Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adjustText)
Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.12/dist-packages (from matplotlib->adju
Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.12/dist-packages (from matplotlib->
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.12/dist-packages (from python-dateutil>=2.7->ma

Paso 19: Visualización Alpha vs R² ajustado (con etiquetas separadas)

from adjustText import adjust_text
from matplotlib.lines import Line2D

ff = ff_table.copy()
x = ff["R2_ajustado"]
y = ff["Alpha"]
s = (ff["Beta_Mkt"].abs() * 600).clip(30, 1200)

colors = np.where(y >= 0, "#60d394", "#ff5a5f")

plt.figure(figsize=(10,6))
plt.scatter(x, y, s=s, c=colors, alpha=0.75,
 edgecolors="white", linewidths=0.6)

Crear etiquetas sin superposición
texts = []
for t in ff.index:
 texts.append(
 plt.text(
 x.loc[t], y.loc[t], t,
 fontsize=9, ha="center", va="bottom",
 color="white", fontweight="bold"
)
)

Ajustar posiciones automáticamente
adjust_text(texts, arrowprops=dict(arrowstyle="-", color="white", lw=0.3))

Línea horizontal en 0
plt.axhline(0, color="white", linewidth=0.8)

Ejes y títulos
plt.xlabel("R² ajustado", color="white")
plt.ylabel("Alpha (diario)", color="white")
plt.title("Alpha vs R² ajustado", color="white", fontsize=13, fontweight="bold")

Fondo oscuro
plt.gca().set_facecolor("#0d0f11")

Leyenda
legend_elems = [
 Line2D([0],[0], marker='o', color='w', label='Alpha ≥ 0', markerfacecolor='#2ecc71', markersize=10),
 Line2D([0],[0], marker='o', color='w', label='Alpha < 0', markerfacecolor='#e74c3c', markersize=10)
]
plt.legend(handles=legend_elems, loc="best", facecolor="#0d0f11",
 edgecolor="white", labelcolor="white")

Cuadrícula suave
plt.grid(True, linestyle="--", linewidth=0.6, alpha=0.35, color="#cccccc")

plt.tight_layout()
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 27/35

Retorno Volatilidad Sharpe Pesos

0 0.199462 0.209336 0.952834 [0.0378, 0.096, 0.0739, 0.0604, 0.0158, 0.0157...

1 0.177279 0.198857 0.891489 [0.0295, 0.037, 0.046, 0.0793, 0.0202, 0.0519,...

2 0.191760 0.190775 1.005164 [0.0237, 0.0607, 0.0286, 0.0477, 0.0501, 0.016...

3 0.261593 0.216959 1.205723 [0.0135, 0.0769, 0.0071, 0.0946, 0.074, 0.019,...

4 0.138644 0.181784 0.762684 [0.0889, 0.0473, 0.012, 0.0715, 0.0762, 0.0562...

Paso 20: Simulación Monte Carlo: generación de 10.000 portafolios aleatorios

Universo y retornos diarios (excluye SPY)
activos = [t for t in tickers if t != "SPY"]
data_returns = ret_diarios[activos].dropna()

Semilla y cantidad de simulaciones
np.random.seed(42)
num_portafolios = 10000

Parámetros anualizados
media_retornos = data_returns.mean() * 252
matriz_cov = data_returns.cov() * 252
tickers_sim = data_returns.columns

Simulación de portafolios aleatorios
resultados = {"Retorno": [], "Volatilidad": [], "Sharpe": [], "Pesos": []}

for _ in range(num_portafolios):
 pesos = np.random.random(len(tickers_sim))
 pesos /= pesos.sum()

 retorno = float(pesos @ media_retornos.values)
 volatilidad = float(np.sqrt(pesos @ matriz_cov.values @ pesos))
 sharpe_ratio = retorno / volatilidad

 resultados["Retorno"].append(retorno)
 resultados["Volatilidad"].append(volatilidad)
 resultados["Sharpe"].append(sharpe_ratio)
 resultados["Pesos"].append(pesos)

DataFrame de resultados
portafolios = pd.DataFrame(resultados)
portafolios["Pesos"] = portafolios["Pesos"].apply(lambda x: np.round(x, 4))

portafolios.head()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 28/35

Próximos pasos: Generar código con portafolios New interactive sheet

Paso 21: Visualización de la frontera eficiente y portafolio de máxima Sharpe

plt.style.use("dark_background")

Identificar portafolio óptimo
idx_max_sharpe = portafolios["Sharpe"].idxmax()
mejor_portafolio = portafolios.loc[idx_max_sharpe]

plt.figure(figsize=(12, 7))

Colormap
cmap = mpl.colors.LinearSegmentedColormap.from_list(
 "neo", ["#2ec4b6", "#5a189a", "#ff6b6b"]
)

Nube de puntos
scatter = plt.scatter(
 portafolios["Volatilidad"], portafolios["Retorno"],
 c=portafolios["Sharpe"], cmap=cmap,
 alpha=0.85, s=45,
 edgecolors="#9be7ff", linewidths=0.4
)

Barra de color
cbar = plt.colorbar(scatter)
cbar.set_label("Ratio de Sharpe", color="white", fontsize=11)
plt.setp(cbar.ax.get_yticklabels(), color="white")

Portafolio óptimo (estrella dorada)
plt.scatter(
 mejor_portafolio["Volatilidad"], mejor_portafolio["Retorno"],
 color="#fcf300", marker="*", s=520, edgecolors="black", linewidths=1.3,
 label="Máxima Sharpe"
)

Estética general
plt.title("Simulación de Portafolios y Frontera Eficiente", fontsize=16, color="white", pad=12)
plt.xlabel("Volatilidad anual", color="white", fontsize=12)
plt.ylabel("Retorno anual esperado", color="white", fontsize=12)
plt.legend(facecolor="#0D0F11", edgecolor="white")
plt.grid(False)

Bordes del gráfico en blanco
ax = plt.gca()
for sp in ax.spines.values():
 sp.set_color("white")

plt.tight_layout()
plt.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 29/35

Métricas del Portafolio Óptimo

Retorno 31.01%

Volatilidad 22.10%

Sharpe 1.40

dtype: object

Paso 22: Métricas del portafolio óptimo (Máxima Sharpe)
metricas_optimas = mejor_portafolio[["Retorno", "Volatilidad", "Sharpe"]].copy()

Formatear los valores
metricas_optimas["Retorno"] = f"{metricas_optimas['Retorno']*100:.2f}%"
metricas_optimas["Volatilidad"] = f"{metricas_optimas['Volatilidad']*100:.2f}%"
metricas_optimas["Sharpe"] = f"{metricas_optimas['Sharpe']:.2f}"

Mostrar como Serie (vertical)
metricas_optimas = pd.Series(metricas_optimas)
metricas_optimas.name = "Métricas del Portafolio Óptimo"
display(metricas_optimas)

Paso 23: 10.000 carteras válidas con pisos y techos para PAM/YPF/VIST

activos = [t for t in tickers if t != "SPY"]
data_returns = ret_diarios[activos].dropna()

np.random.seed(42)
TARGET = 10_000
BATCH = 50_000

media_retornos = data_returns.mean() * 252
matriz_cov = data_returns.cov() * 252
tickers_sim = data_returns.columns

alpha = np.full(len(tickers_sim), 6.0)
limitados = ["YPF", "PAM", "VIST"]
idx_lim = [tickers_sim.get_loc(t) for t in limitados if t in tickers_sim]
for i in idx_lim:

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 30/35

Generadas: 750,000 | Aceptadas: 10,000 | Tasa: 1.3%
0

Ticker

NVDA 9.58%

KO 9.49%

AAPL 7.43%

GLD 7.07%

BRK-B 6.91%

AMZN 6.8%

PG 6.55%

MSFT 6.46%

GOOGL 6.25%

BTC-USD 3.82%

IEUR 3.29%

UNH 3.26%

PFE 3.06%

JNJ 2.95%

TSLA 2.93%

PAM 2.68%

MELI 2.47%

EEM 2.26%

DIS 1.96%

YPF 1.93%

VIST 1.83%

NKE 1.03%

dtype: object

 alpha[i] = 2.0

floor = 0.018
cap = 0.03

valid = []
total_gen = 0

while sum(len(v) for v in valid) < TARGET:
 W = np.random.dirichlet(alpha, size=BATCH)
 total_gen += BATCH
 ok = np.ones(len(W), dtype=bool)
 if idx_lim:
 ok &= (W[:, idx_lim] <= cap).all(axis=1)
 ok &= (W[:, idx_lim] >= floor).all(axis=1)
 valid.append(W[ok])

W_keep = np.vstack(valid)[:TARGET]
print(f"Generadas: {total_gen:,} | Aceptadas: {W_keep.shape[0]:,} | Tasa: {W_keep.shape[0]/total_gen:.1%}")

Métricas vectorizadas
rets = W_keep @ media_retornos.values
vols = (np.einsum('ij,jk,ik->i', W_keep, matriz_cov.values, W_keep))**0.5
sharpes = rets / vols

portafolios = pd.DataFrame({"Retorno": rets, "Volatilidad": vols, "Sharpe": sharpes})
portafolios["Pesos"] = list(W_keep.round(4))

Portafolio de máxima Sharpe
idx_max = portafolios["Sharpe"].idxmax()
mejor_portafolio = portafolios.loc[idx_max]

Pesos óptimos (%)
pesos_optimos = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).sort_values(ascending=False)
pesos_optimos_pct = (pesos_optimos * 100).round(2).astype(str) + '%'
display(pesos_optimos_pct)

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 31/35

Paso 24: Visualización de la composición del portafolio óptimo
plt.style.use("dark_background")

w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)
w_pct = (w * 100).round(2)
w_sorted = w_pct.sort_values(ascending=False)

cmap = mcolors.LinearSegmentedColormap.from_list("peso_grad", [(0.0,"#7400b8"),(0.5,"#5e60ce"),(1.0,"#80ffdb")])
norm = mcolors.Normalize(vmin=w_sorted.min() - 6, vmax=w_sorted.max() + 6)
colors = [cmap(norm(v)) for v in w_sorted[::-1]]

fig, ax = plt.subplots(figsize=(12,7))
ax.barh(w_sorted.index[::-1], w_sorted.values[::-1], color=colors, edgecolor="#222", linewidth=0.6)

ax.set_title("Pesos del Portafolio Óptimo (Máxima Sharpe)", fontsize=16, color="white", pad=12)
ax.set_xlabel("Peso (%)", color="white"); ax.set_ylabel("")
ax.tick_params(colors="white")
ax.grid(False)

for y, v in enumerate(w_sorted.values[::-1]):
 ax.text(v + 0.15, y, f"{v:.2f}%", va="center", color="white", fontsize=10)

ax.margins(x=0.15)
for sp in ax.spines.values(): sp.set_color("white")
plt.tight_layout(); plt.show()

Paso 25: construir df_pais desde el portafolio óptimo

Pesos del portafolio óptimo (%)
w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)
w_pct = (w * 100).round(2)

País por ticker
paises = {}
for t in w_pct.index:
 try:
 info = yf.Ticker(t).info
 paises[t] = info.get("country") or "Desconocido"
 except Exception:
 paises[t] = "Desconocido"

ETFs/cripto
fallback_pais = {

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 32/35

 "GLD": "Global",
 "EEM": "Global",
 "IEUR": "Europa",
 "BTC-USD": "Global",
 "SPY": "United States"
}
for t, p in fallback_pais.items():
 if t in w_pct.index and (paises.get(t) in [None, "Desconocido", ""]):
 paises[t] = p

Overrides manuales
overrides_pais = {
 "MELI": "Argentina - Latam",
 "VIST": "Argentina",
 "YPF": "Argentina",
 "PAM": "Argentina",
}
for t, p in overrides_pais.items():
 if t in w_pct.index:
 paises[t] = p

DataFrame final para el sunburst
df_pais = (
 pd.DataFrame({"Ticker": w_pct.index, "Peso": w_pct.values})
 .assign(Pais=lambda d: d["Ticker"].map(paises).fillna("Desconocido"))
)

Paso 26: Sunburst por país/sector

import colorsys
import plotly.graph_objects as go

Paleta base por país
colores_pais = {
 "United States": "#9b5de5",
 "Global": "#f15bb5",
 "Europa": "#fee440",
 "Argentina": "#00bbf9",
 "Argentina - Latam": "#00f5d4",
 "Desconocido": "#dee2ff"
}

def hex_to_rgb(hexstr):
 hexstr = hexstr.lstrip("#")
 return tuple(int(hexstr[i:i+2], 16) for i in (0, 2, 4))

def rgb_to_hex(rgb):
 return "#%02x%02x%02x" % rgb

def shade_from_base(base_hex, t, darker_when_bigger=True):
 r, g, b = hex_to_rgb(base_hex)
 h, l, s = colorsys.rgb_to_hls(r/255.0, g/255.0, b/255.0)
 l_min, l_max = 0.30, 0.70
 L = l_max - t*(l_max - l_min) if darker_when_bigger else l_min + t*(l_max - l_min)
 R, G, B = colorsys.hls_to_rgb(h, L, s)
 return rgb_to_hex((int(R*255), int(G*255), int(B*255)))

Jerarquía
root = "Portafolio"
labels = [root]
parents = [""]
values = [df_pais["Peso"].sum()]
colors = ["#0d0f11"]

paises = df_pais["Pais"].unique().tolist()
peso_pais = df_pais.groupby("Pais")["Peso"].sum()

Países
for p in paises:
 labels.append(p)
 parents.append(root)
 values.append(float(peso_pais.loc[p]))
 colors.append(colores_pais.get(p, "#4cc9f0"))

Tickers con degradé dentro de cada país
for p in paises:
 base = colores_pais.get(p, "#4cc9f0")
 dfp = df_pais[df_pais["Pais"] == p].copy().sort_values("Peso", ascending=False)
 v = dfp["Peso"].values
 t_norm = (v - v.min()) / (v.max() - v.min()) if v.max() != v.min() else [0.5]*len(v)

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 33/35

Portafolio
100.01%

Global
13.15%

Argentina
6.44%

Europa
3.29%

Argentina - Lata
2.47%

NV
9.5

KO
9.49%

AAPL
7.43%BRK-B

6.91%

AMZN
6.80%

PG
6.55%

MSFT
6.46%

GOOGL
6.25%

UNH
3.26%

PFE
3.06% JNJ

2.95% TSLA
2.93% DIS

1.96%NKE1.03%

GLD
7.07%

BTC-USD
3.82%

EEM
2.26%

PAM
2.68%

Y
1.9

Composición del Portafolio por País

 for (tick, peso, t) in zip(dfp["Ticker"], dfp["Peso"], t_norm):
 labels.append(tick)
 parents.append(p)
 values.append(float(peso))
 colors.append(shade_from_base(base, t, darker_when_bigger=True))

Figura
fig = go.Figure(go.Sunburst(
 labels=labels,
 parents=parents,
 values=values,
 branchvalues="total",
 marker=dict(colors=colors, line=dict(color="rgba(13,15,17,1)", width=1.1)),
 textinfo="label+value+percent parent",
 texttemplate="%{label}
%{value:.2f}%",
 textfont=dict(color="white", size=12),
 hovertemplate="%{label}
Peso: %{value:.2f}%
Del país: %{percentParent:.1%}<extra></extra>",
))

Texto negro para sectores claros (Europa, IEUR, Argentina-Latam, MELI)
sectores_claros = ["Europa", "IEUR", "Argentina - Latam", "MELI"]
fig.update_traces(
 selector=dict(type="sunburst"),
 textfont=dict(
 color=[
 "black" if any(k.lower() in l.lower() for k in sectores_claros) else "white"
 for l in labels
],
 size=12
)
)

fig.update_layout(
 title="Composición del Portafolio por País",
 paper_bgcolor="#0d0f11",
 plot_bgcolor="#0d0f11",
 font=dict(color="#f5f5f5", family="Orbitron, sans-serif"),
 margin=dict(l=10, r=10, t=50, b=10)
)

fig.show()

Paso 27: Treemap por país/sector

import plotly.express as px

Pesos del óptimo (%)
w = pd.Series(mejor_portafolio["Pesos"], index=tickers_sim).astype(float)
w_pct = (w * 100).round(2)

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 34/35

Technology

Consumer Defensive

Consumer Cyclical

Healthcare

Communication Services ETF/Commodity

Financial Services

Cripto

Energy ETF/Europa

Utilities ETF/Emergentes

NVDA
9.58%

AAPL
7.43%

MSFT
6.46%

KO
9.49%

PG
6.55%

AMZN
6.80%

TSLA
2.93%

MELI
2.47%

NKE
1.03%

UNH
3.26%

PFE
3.06%

JNJ
2.95%

GOOGL
6.25%

DIS
1.96%

GLD
7.07%

BRK-B
6.91%

BTC-USD
3.82%

YPF
1.93%

VIST
1.83%

IEUR
3.29%

PAM
2.68%

EEM
2.26% 2

3

4

5

6

7

8

9

Peso

Composición por Sector

Datos desde Yahoo Finance (sector)
sectores = {}
for t in tickers_sim:
 try:
 info = yf.Ticker(t).info
 sectores[t] = info.get("sector") or "Desconocido"
 except Exception:
 sectores[t] = "Desconocido"

Fallbacks
fallback_sector = {
 "GLD":"ETF/Commodity", "EEM":"ETF/Emergentes",
 "IEUR":"ETF/Europa", "BTC-USD":"Cripto"
}
for t, s in fallback_sector.items():
 if t in sectores and sectores[t] in [None, "Desconocido", ""]:
 sectores[t] = s

DataFrame
df_sec = (
 pd.DataFrame({"Ticker": w_pct.index, "Peso": w_pct.values})
 .assign(Sector=lambda d: d["Ticker"].map(sectores).fillna("Desconocido"))
)

Treemap
fig_treemap_sector = px.treemap(
 df_sec,
 path=["Sector","Ticker"], values="Peso", color="Peso",
 color_continuous_scale=["#7400b8","#5e60ce","#64dfdf","#80ffdb"],
 template="plotly_dark",
 title="Composición por Sector"
)

Etiquetas
fig_treemap_sector.update_traces(
 texttemplate="%{label}
%{value:.2f}%",
 textfont_size=14,
 textfont_color="white"
)

Cambiar solo NVDA a texto negro
for trace in fig_treemap_sector.data:
 if hasattr(trace, "labels"):
 new_colors = ["white"] * len(trace.labels)
 for i, label in enumerate(trace.labels):
 if label in ["NVDA", "Technology", "Information Technology"]:
 new_colors[i] = "black"
 trace.textfont = dict(color=new_colors)

fig_treemap_sector.update_layout(margin=dict(l=10, r=10, t=40, b=10))
fig_treemap_sector.show()

30/11/25, 10:19 a.m. Proyecto_Python_Cartera_Gino.ipynb - Colab

https://colab.research.google.com/drive/1FLDFSoonLfcYYsUtttPMqPFa4YMhGIex?authuser=3#scrollTo=1MVwDGvDofYs&printMode=true 35/35

